Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(27): e2300204120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364111

ABSTRACT

Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.


Subject(s)
Herpesvirus 8, Human , Inflammasomes , Virus Replication , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endothelial Cells , Herpesvirus 8, Human/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Virus Replication/physiology , Pyroptosis
2.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829799

ABSTRACT

Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.


Subject(s)
Acclimatization , Cold Temperature , Animals , Rats , Acclimatization/genetics , China , Phenotype , Genetic Variation , Adaptation, Physiological/genetics , Body Temperature Regulation/genetics , Climate Change
3.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37889087

ABSTRACT

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Subject(s)
Oogenesis , RNA, Messenger, Stored , Female , Humans , Meiosis/genetics , Oocytes/physiology , Oogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger, Stored/genetics , Mice, Inbred C57BL , Male , Animals , Mice
4.
Nano Lett ; 24(30): 9178-9185, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39017609

ABSTRACT

Lithium (Li) dendritic growth and huge volume expansion seriously hamper Li-metal anode development. Herein, we design a lightweight 3D Li-ion-affinity host enabled by silver (Ag) nanoparticles fully decorating a porous melamine sponge (Ag@PMS) for dendrite-free and high-areal-capacity Li anodes. The compact Ag nanoparticles provide abundant preferred nucleation sites and give the host strong conductivity. Moreover, the high specific surface area and polar groups of the elastic, porous melamine sponge enhance the Li-ion diffusion kinetics, prompting homogeneity of Li deposition and stripping. As expected, the integrated 3D Ag@PMS-Li anode delivered a remarkable electrochemical performance, with a Coulombic efficiency (CE) of 97.14% after 450 cycles at 1 mA cm-2. The symmetric cell showed an ultralong lifespan of 3400 h at 1 mA cm-2 for 1 mAh cm-2. This study provides a facile and cost-effective strategy to design an advanced 3D framework for the preparation of a stable dendrite-free Li metal anode.

5.
Nano Lett ; 24(28): 8770-8777, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968171

ABSTRACT

Oxygen-mediated triplet-triplet annihilation upconversion (TTA-UC) quenching limits the application of such organic upconversion materials. Here, we report that the photooxidation of organic amines is an effective and versatile strategy to suppress oxygen-mediated upconversion quenching in both organic solvents and aqueous solutions. The strategy is based on the dual role of organic amines in photooxidation, i.e., as singlet oxygen scavengers and electron donors. Under photoexcitation, the photosensitizer sensitizes oxygen to produce singlet oxygen for the oxidation of alkylamine, reducing the oxygen concentration. However, photoinduced electron transfer among photosensitizers, organic amines, and oxygen leads to the production of superoxide anions that suppress TTA-UC. To observe oxygen-tolerating TTA-UC, we find that alkyl secondary amines can balance the production of singlet oxygen and superoxide anions. We then utilize polyethyleneimine (PEI) to synthesize amphiphilic polymers to encapsulate TTA-UC pairs for the formation of water-dispersible, ultrasmall, and multicolor-emitting TTA-UC nanoparticles.

6.
Nano Lett ; 24(8): 2544-2552, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349341

ABSTRACT

Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.


Subject(s)
Quantum Dots , Virus Diseases , Viruses , Humans , Viral Envelope/metabolism , Viral Envelope Proteins
7.
J Am Chem Soc ; 146(15): 10785-10797, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573588

ABSTRACT

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP). Under 1064 nm excitation, this photon upconversion revealed a record-corrected upconversion efficiency of 0.37% (normalized to 100%), with the anti-Stokes shift (1.07 eV) approaching the theoretical limit (1.17 eV). The observation of this unexpected result is due to our discovery of the presence of a weak interaction between the sulfur atom on Th-DPP and Pb2+ on the PbS QDs surface, facilitating electronic coupling between PbS QDs and Th-DPP, such that the realization of triplet exciton transfer efficiency is close to 100% even when the energy gap is as small as 0.04 eV. With this premise, this photon upconversion as a photocatalyst enables the production of standing organic gel via photopolymerization under 1064 nm illumination, displaying NIR-II photon-driven photoredox catalysis. This research not only establishes the foundation for enhancing the performance of NIR-II excitable photonic upconversion but also promotes its development in photonics and photoredox catalysis.

8.
J Am Chem Soc ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069661

ABSTRACT

The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.

9.
J Transl Med ; 22(1): 558, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862971

ABSTRACT

PURPOSE: The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS: The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription­quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS: In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION: BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Proliferation , Colorectal Neoplasms , Disease Progression , Fluorodeoxyglucose F18 , Gene Expression Regulation, Neoplastic , Positron Emission Tomography Computed Tomography , Humans , Fluorodeoxyglucose F18/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Female , Male , Cell Line, Tumor , Middle Aged , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Aged
10.
J Transl Med ; 22(1): 240, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443933

ABSTRACT

BACKGROUND: Mitochondria produce adenosine triphosphate through respiratory activities to power sperm differentiation and motility, and decreased mitochondrial respiratory activity can result in poor sperm motility and asthenospermia. The mitochondrial sheath is a component of the mid-piece of the sperm flagellum, and dysfunction of the sheath can reduce sperm motility and cause male infertility. The membrane occupation and recognition nexus-motif protein 2 (MORN2) is testis enriched in mice, and the MORN motif was reported to play a role in the regulation of bioelectrical signal homeostasis in cardiomyocytes. METHODS: We generated Morn2-/- mice using CRISPR/Cas9 and evaluated the potential functions of MORN2 in spermiogenesis through histological analysis, fertility examination, RT-PCR, CASA, immunofluorescence, TUNEL, electron microscopy analysis, mitochondrial energy metabolism analysis, etc. RESULTS: The Morn2-/- mice were infertile, and their sperm showed severe motility defects. Morn2-/- sperm also had abnormal morphology characterized by bent heads, aberrant mitochondrial sheath formation, lower mitochondrial membrane potential, higher levels of reactive oxygen species, and decreased mitochondrial respiratory activity. CONCLUSIONS: Our study demonstrates that MORN2 is essential for male fertility and indicates that MORN2 functions in mitochondrial sheath formation and regulates mitochondrial respiratory activity.


Subject(s)
Semen , Sperm Motility , Animals , Male , Mice , Energy Metabolism , Fertility , Mitochondria
11.
Metabolomics ; 20(3): 52, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722414

ABSTRACT

INTRODUCTION: Metabolite signatures for blood pressure (BP) may reveal biomarkers, elucidate pathogenesis, and provide prevention targets for high BP. Knowledge regarding metabolites associated with BP in adolescence remains limited. OBJECTIVES: Investigate the associations between metabolites and adolescent BP, both cross-sectionally (in early and late adolescence) and prospectively (from early to late adolescence). METHODS: Participants are from the Project Viva prospective cohort. During the early (median: 12.8 years; N = 556) and late (median: 17.4 years; N = 501) adolescence visits, we conducted untargeted plasma metabolomic profiling and measured systolic (SBP) and diastolic BP (DBP). We used linear regression to identify metabolites cross-sectionally associated with BP at each time point, and to assess prospective associations of changes in metabolite levels from early to late adolescence with late adolescence BP. We used Weighted Gene Correlation Network Analysis and Spearman's partial correlation to identify metabolite clusters associated with BP at each time point. RESULTS: In the linear models, higher androgenic steroid levels were consistently associated with higher SBP and DBP in early and late adolescence. A cluster of 59 metabolites, mainly composed of androgenic steroids, correlated with higher SBP and DBP in early adolescence. A cluster primarily composed of fatty acid lipids was marginally associated with higher SBP in females in late adolescence. Multiple metabolites, including those in the creatine and purine metabolism sub-pathways, were associated with higher SBP and DBP both cross-sectionally and prospectively. CONCLUSION: Our results shed light on the potential metabolic processes and pathophysiology underlying high BP in adolescents.


Subject(s)
Blood Pressure , Metabolomics , Humans , Adolescent , Blood Pressure/physiology , Male , Female , Metabolomics/methods , Cross-Sectional Studies , Prospective Studies , Child , Biomarkers/blood , United States , Metabolome/physiology , Cohort Studies
12.
Chem Res Toxicol ; 37(7): 1104-1112, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38885202

ABSTRACT

Chlortoluron (CTU) is an herbicide extensively used in agricultural settings for crop cultivation. Its presence in water has been identified as a pollutant detrimental to aquatic species. The objective of the present study was to explore the metabolic activation and hepatotoxicity of CTU. Through human and rat liver microsomal incubations supplemented with CTU, nicotinamide adenine dinucleotide phosphate (NADPH), and either glutathione or N-acetyl cysteine, a benzylic alcohol metabolite (M1) was discerned, alongside a phenol metabolite (M2), a glutathione conjugate (M3), and an N-acetyl cysteine conjugate (M4). In rats exposed to CTU, biliary M3 and urinary M4 were detected in their bile and urine, respectively. The generation of M1 was detected in the presence of NADPH. The observation of M3 and M4 suggests the formation of an iminoquinone methide intermediate arising from the oxidation of M1. CYP3A4 was found to be the principal enzyme catalyzing the metabolic activation of CTU. Furthermore, CTU exhibited cytotoxic properties in cultured rat primary hepatocytes in a concentration-dependent pattern. Concomitant treatment of hepatocytes with ketoconazole mitigated their susceptibility to the cytotoxic effects of CTU.


Subject(s)
Cytochrome P-450 CYP3A , Hepatocytes , Microsomes, Liver , Animals , Rats , Cytochrome P-450 CYP3A/metabolism , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Microsomes, Liver/metabolism , Rats, Sprague-Dawley , Activation, Metabolic , Cell Survival/drug effects , Cells, Cultured , Molecular Structure , Herbicides/toxicity , Herbicides/metabolism , Dose-Response Relationship, Drug
13.
Chem Res Toxicol ; 37(6): 935-943, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38761382

ABSTRACT

Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.


Subject(s)
Amitriptyline , Cytochrome P-450 CYP3A , Epoxy Compounds , Hepatocytes , Microsomes, Liver , Rats, Sprague-Dawley , Animals , Amitriptyline/metabolism , Rats , Cytochrome P-450 CYP3A/metabolism , Microsomes, Liver/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Epoxy Compounds/metabolism , Epoxy Compounds/toxicity , Epoxy Compounds/chemistry , Glutathione/metabolism , Cells, Cultured
14.
Circ Res ; 130(5): e3-e17, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35105170

ABSTRACT

BACKGROUND: Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. METHODS: CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. RESULTS: The expression of CIRKIL was increased in I/R myocardium and H2O2-treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH2A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H2O2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.


Subject(s)
Coronary Artery Disease , Induced Pluripotent Stem Cells , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Apoptosis , Coronary Artery Disease/metabolism , DNA/metabolism , Humans , Hydrogen Peroxide/toxicity , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Knockout , Myocardial Infarction/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Reperfusion
15.
Org Biomol Chem ; 22(30): 6198-6204, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39028029

ABSTRACT

We report herein a visible-light induced, Fe-catalyzed selenocyclization of 2-ethynylanilines with diselenides under ambient conditions, employing ethyl acetate as a benign solvent with no stoichiometric additive required. The simple iron salt FeBr3 serves as both a photo-induced LMCT (Ligand-to-Metal Charge Transfer) catalyst and a Lewis acid catalyst to promote the desired transformation in a sustainable manner, enabling the facile synthesis of diverse 3-selenylindoles with extended substitution patterns. Moreover, gram-scale reactions and late-stage functionalization of bioactive molecules further highlight the synthetic practicality of this method.

16.
BJOG ; 131(4): 424-432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37661294

ABSTRACT

OBJECTIVE: There is a secular trend towards earlier age of menarche in the US and globally. Earlier age at menarche (AAM) has been associated with metabolic disorders that increase risk for preterm delivery (PTD), yet no studies in the US have investigated whether AAM influences risk of PTD. This study tested the hypothesis that AAM is associated with PTD. DESIGN: A case-control study. SETTING: The Boston Medical Center (BMC) in Boston, Massachusetts. POPULATION OR SAMPLE: 8264 mother-newborn dyads enrolled at birth at BMC between 1998 and 2019, of which 2242 mothers had PTD (cases) and 6022 did not have PTD (controls). METHODS: Multivariable-adjusted logistic regression models and restricted cubic splines were used to examine the association between AAM and risk of PTD. The combined impact of AAM and age at delivery on the risk of PTD was also examined. MAIN OUTCOME MEASURES: Preterm delivery and gestational age (GA) was defined by maternal last menstrual period and early ultrasound documented in medical records. RESULTS: Maternal age at delivery was 28.1 ± 6.5 years and AAM was 12.85 ± 1.86 years. Multivariable-adjusted cubic spline suggested an inverse dose-response association of AAM with odds of PTD and, consistently, a positive association with GA. A 1-year earlier AAM was associated with 5% (95% CI 2%-8%) higher odds of PTD, after adjustment for maternal year of birth, parity, maternal place of birth, education, smoking status and Mediterranean-style diet score. The association between AAM and PTD was stronger among older mothers whose age at delivery was ≥35 years. CONCLUSIONS: Earlier AAM is associated with higher odds for PTD, and this association is stronger among women at advanced reproductive age.


Subject(s)
Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Adult , Premature Birth/epidemiology , Premature Birth/etiology , Case-Control Studies , Mothers , Menarche , Maternal Age
17.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760544

ABSTRACT

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

18.
J Nanobiotechnology ; 22(1): 37, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263204

ABSTRACT

BACKGROUND: Therapeutic strategies based on scavenging reactive oxygen species (ROS) and suppressing inflammatory cascades are effective in improving functional recovery after spinal cord injury (SCI). However, the lack of targeting nanoparticles (NPs) with powerful antioxidant and anti-inflammatory properties hampers the clinical translation of these strategies. Here, CD44-targeting hyaluronic acid-selenium (HA-Se) NPs were designed and prepared for scavenging ROS and suppressing inflammatory responses in the injured spinal cord, enhancing functional recovery. RESULTS: The HA-Se NPs were easily prepared through direct reduction of seleninic acid in the presence of HA. The obtained HA-Se NPs exhibited a remarkable capacity to eliminate free radicals and CD44 receptor-facilitated internalization by astrocytes. Moreover, the HA-Se NPs effectively mitigated the secretion of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6) by microglia cells (BV2) upon lipopolysaccharide-induced inflammation. In vivo experiments confirmed that HA-Se NPs could effectively accumulate within the lesion site through CD44 targeting. As a result, HA-Se NPs demonstrated superior protection of axons and neurons within the injury site, leading to enhanced functional recovery in a rat model of SCI. CONCLUSIONS: These results highlight the potential of CD44-targeting HA-Se NPs for SCI treatment.


Subject(s)
Selenium , Spinal Cord Injuries , Animals , Rats , Hyaluronic Acid , Reactive Oxygen Species , Recovery of Function
19.
Arch Toxicol ; 98(4): 1095-1110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369618

ABSTRACT

Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 µM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 µM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.


Subject(s)
Chemical and Drug Induced Liver Injury , Chlorzoxazone , Humans , Rats , Animals , Cytochrome P-450 CYP3A/metabolism , Activation, Metabolic , Rats, Sprague-Dawley , Microsomes, Liver/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Epoxy Compounds/metabolism , Glutathione/metabolism
20.
Funct Integr Genomics ; 23(3): 282, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37624450

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) might cause long-term burden of insomnia, while the common pathogenic mechanisms are not elucidated. The gene expression profiles of COVID-19 patients and healthy controls were retrieved from the GEO database, while gene set related with circadian rhythm was obtained from GeneCards database. Seventy-six shared genes were screened and mainly enriched in cell cycle, cell division, and cell proliferation, and 6 hub genes were found out including CCNA2, CCNB1, CDK1, CHEK1, MKI67, and TOP2A, with positive correlation to plasma cells. In the TF-gene regulatory network, NFYA, NFIC, MEF2A, and FOXC1 showed high connectivity with hub genes. This study identified six hub genes and might provide new insights into pathogenic mechanisms and novel clinical management strategies.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Cell Proliferation , Circadian Rhythm/genetics , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL