Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Nucleic Acids Res ; 51(15): 8283-8292, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37486765

ABSTRACT

As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.


Subject(s)
Genetic Techniques , Saccharomyces cerevisiae , Synthetic Biology , Life Cycle Stages , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Synthetic Biology/methods
2.
Nucleic Acids Res ; 51(21): 11967-11979, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37889080

ABSTRACT

Synthetic biology and deep learning synergistically revolutionize our ability for decoding and recoding DNA regulatory grammar. The B-cell-specific transcriptional regulation is intricate, and unlock the potential of B-cell-specific promoters as synthetic elements is important for B-cell engineering. Here, we designed and pooled synthesized 23 640 B-cell-specific promoters that exhibit larger sequence space, B-cell-specific expression, and enable diverse transcriptional patterns in B-cells. By MPRA (Massively parallel reporter assays), we deciphered the sequence features that regulate promoter transcriptional, including motifs and motif syntax (their combination and distance). Finally, we built and trained a deep learning model capable of predicting the transcriptional strength of the immunoglobulin V gene promoter directly from sequence. Prediction of thousands of promoter variants identified in the global human population shows that polymorphisms in promoters influence the transcription of immunoglobulin V genes, which may contribute to individual differences in adaptive humoral immune responses. Our work helps to decipher the transcription mechanism in immunoglobulin genes and offers thousands of non-similar promoters for B-cell engineering.


Subject(s)
Deep Learning , Humans , DNA/genetics , Gene Expression Regulation , Immunoglobulin Variable Region/genetics , Promoter Regions, Genetic , Animals , Mice
3.
Microb Cell Fact ; 22(1): 257, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093313

ABSTRACT

BACKGROUND: Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed. RESULTS: SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism. CONCLUSIONS: SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.


Subject(s)
Bacterial Proteins , Streptomyces , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lincomycin , Transcription Factors/genetics , Streptomyces/genetics , Streptomyces/metabolism , Gene Expression Regulation, Bacterial
4.
Microb Cell Fact ; 21(1): 208, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217200

ABSTRACT

BACKGROUND: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.


Subject(s)
Biological Products , Glucosyltransferases , Glucosides/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Pharmaceutical Preparations , Prolyl Oligopeptidases , Uridine Diphosphate
5.
Metab Eng ; 67: 186-197, 2021 09.
Article in English | MEDLINE | ID: mdl-34229080

ABSTRACT

Quorum sensing (QS) offers cell density dependent dynamic regulations in cell culture through devices such as synchronized lysis circuit (SLC) and metabolic toggle switch (MTS). However, there is still a lack of studies on cocultivation with a combination of different QS-based devices. Taking the production of isopropanol and salidroside as case studies, we have mathematically modeled a comprehensive set of QS-regulated cocultivation schemes and constructed experimental combinations of QS devices, respectively, to evaluate their feasibility and optimality for regulating growth competition and corporative production. Glucose split ratio is proposed for the analysis of competition between cell growth and targeted production. Results show that the combination of different QS devices across multiple members offers a new tool with the potential to effectively coordinate synthetic microbial consortia for achieving high product titer in cross-feeding cocultivation. It is also evident that the performance of such systems is significantly affected by dynamic characteristics of chosen QS devices, carbon source control and the operational settings. This study offers insights for future applications of combinational QS devices in synthetic microbial consortia.


Subject(s)
Microbial Consortia , Quorum Sensing , Coculture Techniques
6.
Microb Cell Fact ; 20(1): 121, 2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34176467

ABSTRACT

BACKGROUND: 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. RESULTS: Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from L-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from L-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor L-phenylalanine and combined the upstream L-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. CONCLUSIONS: We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


Subject(s)
Biosynthetic Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Metabolic Engineering/methods , Phenylalanine/metabolism , Propanols/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Gene Editing , Industrial Microbiology/methods , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
7.
Microb Cell Fact ; 19(1): 30, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32050973

ABSTRACT

BACKGROUND: Lincomycin, produced by Streptomyces lincolnensis, is a lincosamide antibiotic and widely used for the treatment of the infective diseases caused by Gram-positive bacteria. The mechanisms of lincomycin biosynthesis have been deeply explored in recent years. However, the regulatory effects of LmbU that is a transcriptional regulator in lincomycin biosynthetic (lmb) gene cluster have not been fully addressed. RESULTS: LmbU was used to search for homologous LmbU (LmbU-like) proteins in the genomes of actinobacteria, and the results showed that LmbU-like proteins are highly distributed regulators in the biosynthetic gene clusters (BGCs) of secondary metabolites or/and out of the BGCs in actinomycetes. The overexpression, inactivation and complementation of the lmbU gene indicated that LmbU positively controls lincomycin biosynthesis in S. lincolnensis. Comparative transcriptomic analysis further revealed that LmbU activates the 28 lmb genes at whole lmb cluster manner. Furthermore, LmbU represses the transcription of the non-lmb gene hpdA in the biosynthesis of L-tyrosine, the precursor of lincomycin. LmbU up-regulates nineteen non-lmb genes, which would be involved in multi-drug flux to self-resistance, nitrate and sugar transmembrane transport and utilization, and redox metabolisms. CONCLUSIONS: LmbU is a significant pleiotropic transcriptional regulator in lincomycin biosynthesis by entirely activating the lmb cluster and regulating the non-lmb genes in Streptomyces lincolnensis. Our results first revealed the pleiotropic regulatory function of LmbU, and shed new light on the transcriptional effects of LmbU-like family proteins on antibiotic biosynthesis in actinomycetes.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Lincomycin/biosynthesis , Streptomyces , Transcription Factors/genetics , Transcriptome/genetics , Bacterial Proteins/genetics , Gene Expression Profiling/methods , Genetic Pleiotropy/genetics , Multigene Family/genetics , Secondary Metabolism/genetics , Streptomyces/genetics , Streptomyces/metabolism
8.
Microb Cell Fact ; 18(1): 160, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547812

ABSTRACT

BACKGROUND: Alpha-Terpineol (α-Terpineol), a C10 monoterpenoid alcohol, is widely used in the cosmetic and pharmaceutical industries. Construction Saccharomyces cerevisiae cell factories for producing monoterpenes offers a promising means to substitute chemical synthesis or phytoextraction. RESULTS: α-Terpineol was produced by expressing the truncated α-Terpineol synthase (tVvTS) from Vitis vinifera in S. cerevisiae. The α-Terpineol titer was increased to 0.83 mg/L with overexpression of the rate-limiting genes tHMG1, IDI1 and ERG20F96W-N127W. A GSGSGSGSGS linker was applied to fuse ERG20F96W-N127W with tVvTS, and expressing the fusion protein increased the α-Terpineol production by 2.87-fold to 2.39 mg/L when compared with the parental strain. In addition, we found that farnesyl diphosphate (FPP) accumulation by down-regulation of ERG9 expression and deletion of LPP1 and DPP1 did not improve α-Terpineol production. Therefore, ERG9 was overexpressed and the α-Terpineol titer was further increased to 3.32 mg/L. The best α-Terpineol producing strain LCB08 was then used for batch and fed-batch fermentation in a 5 L bioreactor, and the production of α-Terpineol was ultimately improved to 21.88 mg/L. CONCLUSIONS: An efficient α-Terpineol production cell factory was constructed by engineering the S. cerevisiae mevalonate pathway, and the metabolic engineering strategies could also be applied to produce other valuable monoterpene compounds in yeast.


Subject(s)
Cyclohexenes/metabolism , Metabolic Engineering , Monoterpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cyclohexane Monoterpenes , Plant Proteins/genetics , Plant Proteins/metabolism , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Vitis/enzymology , Vitis/genetics
9.
Microb Cell Fact ; 18(1): 73, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31018856

ABSTRACT

BACKGROUND: Diterpenoids are a large class of natural products with complex structures and broad commercial applications as food additives, important medicines, and fragrances. However, their low abundance in plants and high structural complexity limit their applications. Therefore, it is important to create an efficient diterpenoid-producing yeast cell factory of the production of various high-value diterpenoid compounds in a cost-effective manner RESULTS: In this study, 13R-manoyl oxide (13R-MO; 2.31 mg/L) was produced by expressing CfTPS2 and CfTPS3 from Coleus forskohlii in Saccharomyces cerevisiae. The 13R-MO titer was increased by 142-fold to 328.15 mg/L via the stepwise metabolic engineering of the original strain, including the overexpression of the rate-limiting genes (tHMG1 and ERG20) of the mevalonate pathway, transcription and protein level regulation of ERG9, Bts1p and Erg20F96Cp fusion, and the overexpression of tCfTPS2 and tCfTPS3 (excision of the N-terminal plastid transit peptide sequences of CfTPS2 and CfTPS3). The final titer of 13R-MO reached up to 3 g/L by fed-batch fermentation in a 5 L bioreactor. CONCLUSIONS: In this study, an efficient 13R-MO yeast cell factory was constructed, which achieved the de novo production of 3 g/L of 13R-MO from glucose. To the best of our knowledge, this is the highest 13R-MO titer reported to date. Furthermore, the metabolic engineering strategies presented here could be used to produce other valuable diterpenoid compounds in yeast.


Subject(s)
Diterpenes/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Fermentation , Mevalonic Acid/metabolism , Saccharomyces cerevisiae/genetics
10.
Acta Pharmacol Sin ; 40(2): 288-296, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29773886

ABSTRACT

The influence of broad-spectrum antibiotics on the pharmacokinetics and biotransformation of major constituents of Shaoyao-Gancao decoction (SGD) in rats was investigated. The pharmacokinetic behaviors of paeoniflorin (PF), albiflorin (AF), liquiritin (LT), isoliquiritin (ILT), liquiritin apioside (LA), isoliquiritin apioside (ILA), and glycyrrhizic acid (GL), seven major constituents of SGD, as well as glycyrrhetinic acid (GA), a major metabolite of GL, were analyzed. A 1-week pretreatment with broad-spectrum antibiotics (ampicillin, metronidazole, neomycin, 1 g L-1; and vancomycin, 0.5 g L-1) via drinking water reduced plasma exposure of the major constituents. The AUC0-24 h of PF and LT was significantly decreased by 28.7% and 33.8% (P < 0.05 and P < 0.005), respectively. Although the differences were not statistically significant, the AUC0-24 h of AF, ILT, LA, ILA, and GL was decreased by 31.4%, 50.9%, 16.9%, 44.1%, and 37.0%, respectively, compared with the control group. In addition, the plasma GA exposure in the antibiotic-pretreated group was significantly lower (P < 0.005) than the control group. The in vitro stability of the major constituents of SGD in the rat intestinal contents with or without broad-spectrum antibiotics was also investigated. The major constituents were comparatively stable in the rat duodenum contents, and the biotransformation of GL mainly occurred in the rat colon contents. In summary, broad-spectrum antibiotics suppressed the absorption of the major constituents of SGD and significantly inhibited the biotransformation of GL to GA by suppressing the colon microbiota. The results indicated a potential clinical drug-drug interaction (DDI) when SGD was administered with broad-spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , Herb-Drug Interactions , Administration, Oral , Animals , Drugs, Chinese Herbal/administration & dosage , Gastrointestinal Microbiome/drug effects , Glycyrrhizic Acid/metabolism , Glycyrrhizic Acid/pharmacokinetics , Intestinal Absorption/drug effects , Male , Rats, Sprague-Dawley
11.
Metab Eng ; 49: 28-35, 2018 09.
Article in English | MEDLINE | ID: mdl-30031850

ABSTRACT

Zerumbone, the predominant sesquiterpenoid component of Zingiber zerumbet, exhibits diverse pharmacological properties. In this study, de novo production of zerumbone was achieved in a metabolically engineered yeast cell factory by introducing α-humulene synthase (ZSS1), α-humulene 8-hydroxylase (CYP71BA1) and zerumbone synthase variant (ZSD1S114A) from Z. zerumbet, together with AtCPR1 from Arabidopsis thaliana into the yeast strain. Multistep metabolic engineering strategies were applied, including the over-expression of the mevalonate (MVA) pathway rate-limiting enzymes tHMG1 and ERG20, regulation of ERG9 by an inducible promoter and competitive pathway deletion to redirect metabolic flux toward the desired product. In the engineered strain, α-humulene production increased by 18-fold, to 92 mg/L compared to that in the original strain. Five cytochrome P450 reductases (CPRs) from different sources were selected for CYP71BA1 adaptability tests, and AtCPR1 from A. thaliana was found to be the optimal, producing 113.16 µg/L of 8-hydroxy-α-humulene. Multicopy integration of CYP71BA1, AtCPR1, ZSS1 and ICE2 (type III membrane protein) genes resulting in strain LW14 increased the production of 8-hydroxy-α-humulene by 134-fold to 15.2 mg/L. Expressing ZSD1S114A in the ura3 site of strain LW14 resulted in the production of 7 mg/L zerumbone. Multicopy integration of ZSD1S114A increased the production of zerumbone to 20.6 mg/L. The high zerumbone-producing strain was used for batch and fed-batch fermentation in a 5-L bioreactor and zerumbone degradation by yeast was observed; the production of zerumbone finally reached 40 mg/L by fed-batch fermentation in a 5-L bioreactor.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Metabolic Engineering , Saccharomyces cerevisiae , Sesquiterpenes/metabolism , Zingiberaceae , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zingiberaceae/enzymology , Zingiberaceae/genetics
12.
Metab Eng ; 47: 243-253, 2018 05.
Article in English | MEDLINE | ID: mdl-29596994

ABSTRACT

Synthetic microbial coculture to express heterologous biosynthetic pathway for de novo production of medicinal ingredients is an emerging strategy for metabolic engineering and synthetic biology. Here, taking efficient production of salidroside as an example of glycosides, we design and construct a syntrophic Escherichia coli-E. coli coculture composed of the aglycone (AG) strain and the glycoside (GD) strain, which convergently accommodate biosynthetic pathways of tyrosol and salidroside, respectively. To accomplish this the phenylalanine-deficient AG strain was engineered to utilize xylose preferentially and to overproduce precursor tyrosol, while the tyrosine-deficient GD strain was constructed to consume glucose exclusively and to enhance another precursor UDP-glucose availability for synthesis of salidroside. The AG and GD strains in the synthetic consortium are obligatory cooperators through crossfeeding of tyrosine and phenylalanine and compatible in glucose and xylose mixture. Through balancing the metabolic pathway strength, we show that the syntrophic coculture was robust and stable, and produced 6.03 g/L of salidroside. It was the de novo production of salidroside for the first time in E. coli coculture system, which would be applicable for production of other important glycosides and natural products.


Subject(s)
Glucosides , Metabolic Engineering , Phenols , Escherichia coli/genetics , Escherichia coli/growth & development , Glucosides/biosynthesis , Glucosides/genetics , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/metabolism , Uridine Diphosphate Glucose/genetics , Uridine Diphosphate Glucose/metabolism , Xylose/genetics , Xylose/metabolism
13.
Microb Cell Fact ; 16(1): 84, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28511681

ABSTRACT

BACKGROUND: Salvianic acid A (SAA), a valuable natural product from herbal plant Salvia miltiorrhiza, exhibits excellent antioxidant activities on food industries and efficacious therapeutic potential on cardiovascular diseases. Recently, production of SAA in engineered Escherichia coli was established via the artificial biosynthetic pathway of SAA on the multiple plasmids in our previous work. However, the plasmid-mediated system required to supplement expensive inducers and antibiotics during the fermentation process, restricting scale-up production of SAA. Microbial cell factory would be an attractive approach for constitutive production of SAA by chromosome engineering. RESULTS: The limited enzymatic reactions in SAA biosynthetic pathway from glucose were grouped into three modules, which were sequentially integrated into chromosome of engineered E. coli by λ Red homologous recombination method. With starting strain E. coli BAK5, in which the ptsG, pykF, pykA, pheA and tyrR genes were previously deleted, chassis strain BAK11 was constructed for constitutive production of precursor L-tyrosine by replacing the 17.7-kb mao-paa cluster with module 1 (P lacUV5 -aroG fbr -tyrA fbr -aroE) and the lacI gene with module 2 (P trc -glk-tktA-ppsA). The synthetic 5tacs promoter demonstrated the optimal strength to drive the expression of hpaBC-d-ldh Y52A in module 3, which then was inserted at the position between nupG and speC on the chromosome of strain BAK11. The final strain BKD13 produced 5.6 g/L of SAA by fed-batch fermentation in 60 h from glucose without any antibiotics and inducers supplemented. CONCLUSIONS: The plasmid-free and inducer-free strain for SAA production was developed by targeted integration of the constitutive expression of SAA biosynthetic genes into E. coli chromosome. Our work provides the industrial potential for constitutive production of SAA by the indel microbial cell factory and also sets an example of further producing other valuable natural and unnatural products.


Subject(s)
Biosynthetic Pathways/genetics , Chromosomes, Bacterial , Escherichia coli/genetics , Lactates/metabolism , Metabolic Engineering , Biological Products/isolation & purification , Bioreactors , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Deletion , Genetic Engineering , Homologous Recombination , Industrial Microbiology , Plasmids , Salvia/chemistry
14.
Appl Microbiol Biotechnol ; 101(15): 6083-6097, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28685195

ABSTRACT

Monensin, a polyether ionophore antibiotic, is produced by Streptomyces cinnamonensis and worldwide used as a coccidiostat and growth-promoting agent in the field of animal feeding. The monensin biosynthetic gene cluster (mon) has been reported. In this study, the potential functions of three putatively pathway-specific regulators (MonH, MonRI, and MonRII) were clarified. The results from gene inactivation, complementation, and overexpression showed that MonH, MonRI, and MonRII positively regulate monensin production. Both MonH and MonRI are essential for monensin biosynthesis, while MonRII is non-essential and could be completely replaced by additional expression of monRI. Transcriptional analysis of the mon cluster by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and electrophoresis mobility shift assays (EMSAs) revealed a co-regulatory cascade process. MonH upregulates the transcription of monRII, and MonRII in turn enhances the transcription of monRI. MonRII is an autorepressor, while MonRI is an autoactivator. MonH activates the transcription of monCII-monE, and upregulates the transcription of monT that is repressed by MonRII. monAX and monD are activated by MonRI, and upregulated by MonRII. Co-regulation of those post-polyketide synthase (post-PKS) genes by MonH, MonRI, and MonRII would contribute to high production of monensin. These results shed new light on the transcriptional regulatory cascades of antibiotic biosynthesis in Streptomyces.


Subject(s)
Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Monensin/biosynthesis , Multigene Family , Streptomyces/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/biosynthesis , Cloning, Molecular , Gene Deletion , Gene Silencing , Genetic Complementation Test , Streptomyces/chemistry , Transcription, Genetic
15.
BMC Biotechnol ; 16(1): 52, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27342774

ABSTRACT

BACKGROUND: Succinate is a kind of industrially important C4 platform chemical for synthesis of high value added products. Due to the economical and environmental advantages, considerable efforts on metabolic engineering and synthetic biology have been invested for bio-based production of succinate. Precursor phosphoenolpyruvate (PEP) is consumed for transport and phosphorylation of glucose, and large amounts of byproducts are produced, which are the crucial obstacles preventing the improvement of succinate production. In this study, instead of deleting genes involved in the formation of lactate, acetate and formate, we optimized the central carbon metabolism by targeting at metabolic node PEP to improve succinate production and decrease accumulation of byproducts in engineered E. coli. RESULTS: By deleting ptsG, ppc, pykA, maeA and maeB, we constructed the initial succinate-producing strain to achieve succinate yield of 0.22 mol/mol glucose, which was 2.1-fold higher than that of the parent strain. Then, by targeting at both reductive TCA arm and PEP carboxylation, we deleted sdh and co-overexpressed pck and ecaA, which led to a significant improvement in succinate yield of 1.13 mol/mol glucose. After fine-tuning of pykF expression by anti-pykF sRNA, yields of lactate and acetate were decreased by 43.48 and 38.09 %, respectively. The anaerobic stoichiometric model on metabolic network showed that the carbon fraction to succinate of engineered strains was significantly increased at the expense of decreased fluxes to lactate and acetate. In batch fermentation, the optimized strain BKS15 produced succinate with specific productivity of 5.89 mmol gDCW(-1) h(-1). CONCLUSIONS: This report successfully optimizes succinate production by targeting at PEP of the central carbon metabolism. Co-overexpressing pck-ecaA, deleting sdh and finely tuning pykF expression are efficient strategies for improving succinate production and minimizing accumulation of lactate and acetate in metabolically engineered E. coli.


Subject(s)
Carbon/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Genetic Enhancement/methods , Metabolic Engineering/methods , Succinic Acid/metabolism , Escherichia coli Proteins/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Succinic Acid/isolation & purification
16.
Microb Cell Fact ; 15: 90, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27234226

ABSTRACT

BACKGROUND: 4-Hydroxymandelic acid (4-HMA) is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives. 4-HMA is conventionally synthesized by chemical condensation of glyoxylic acid with excessive phenol, and the process is environmentally unfriendly. Microbial cell factory would be an attractive approach for 4-HMA production from renewable and sustainable resources. RESULTS: In this study, a biosynthetic pathway for 4-HMA production was constructed by heterologously expressing the fully synthetic 4-hydroxymandelic acid synthase (shmaS) in our L-tyrosine-overproducing Escherichia coli BKT5. The expression level of shmaS was optimized to improve 4-HMA production by fine tuning of four promoters of different strength combined with three plasmids of different copy number. Furthermore, two genes aspC and tyrB in the competitive pathway were deleted to block the formation of byproduct to enhance 4-HMA biosynthesis. The final engineered E. coli strain HMA15 utilized glucose and xylose simultaneously and produced 15.8 g/L of 4-HMA by fed-batch fermentation in 60 h. CONCLUSIONS: Metabolically engineered E. coli strain for 4-HMA production was designed and constructed, and efficiently co-fermented glucose and xylose, the major components in the hydrolysate mixture of agricultural biomass. Our research provided a promising biomanufacturing route to produce 4-HMA from lignocellulosic biomass.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/metabolism , Glucose/metabolism , Mandelic Acids/metabolism , Xylose/metabolism , Actinobacteria/enzymology , Actinobacteria/genetics , Bioreactors , Chromatography, High Pressure Liquid , Escherichia coli/growth & development , Mandelic Acids/analysis , Mandelic Acids/chemistry , Metabolic Engineering , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic
17.
J Ind Microbiol Biotechnol ; 43(12): 1681-1692, 2016 12.
Article in English | MEDLINE | ID: mdl-27718094

ABSTRACT

The polyether ionophore antibiotic monensin is produced by Streptomyces cinnamonensis and is used as a coccidiostat for chickens and growth-promoting agent for cattle. Monensin biosynthetic gene cluster has been cloned and partially characterized. The GntR-family transcription factor DasR regulates antibiotic production and morphological development in Streptomyces coelicolor and Saccharopolyspora erythraea. In this study, we identified and characterized the two-level regulatory cascade of DasR to monensin production in S. cinnamonensis. Forward and reverse genetics by overexpression and antisense RNA silence of dasR revealed that DasR positively controls monensin production under nutrient-rich condition. Electrophoresis mobility shift assay (EMSA) showed that DasR protein specifically binds to the promoter regions of both pathway-specific regulatory gene monRII and biosynthetic genes monAIX, monE and monT. Semi-quantitative RT-PCR further confirmed that DasR upregulates the transcriptional levels of these genes during monensin fermentation. Subsequently, co-overexpressed dasR with pathway-specific regulatory genes monRI, monRII or monH greatly improved monensin production.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/physiology , Monensin/biosynthesis , Transcription Factors/physiology , Animals , Bioreactors , Cattle , Gene Deletion , Gene Expression Regulation, Bacterial , Genes, Regulator , Multigene Family , Streptomyces/genetics
18.
J Sep Sci ; 38(16): 2833-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26097085

ABSTRACT

Salvianic acid A (also known as danshensu) is a plant-derived polyphenolic acid, and has a variety of physiological and pharmacological activities. Our laboratory previously constructed an unprecedented artificial biosynthetic pathway in Escherichia coli and established the fermentation process to produce salvianic acid A. Here, we developed an efficient method for separating salvianic acid A from the fermentation broth of engineered Escherichia coli by macroporous resins. Among ten tested macroporous resins, the static and dynamic adsorption/desorption experiments demonstrated that X5 resin was the best to separate salvianic acid A from fermentation broth. Other parameters during static and dynamic procedures were also investigated. Under the optimum separation conditions, the average adsorption capacity of SAA were 10.66±0.54 mg/g dry resin and the desorption ratio was 85.6±4.1%. The purity and recovery yield of salvianic acid A in the final dry product were 90.2±1.5 and 81.5±2.3%, respectively. The results show that adsorption separation with macroporous resin X5 was an efficient method to prepare salvianic acid A from fermentation broth. This work will benefit the development and application of plant-derived salvianic acid A and its derivatives.


Subject(s)
Chromatography/methods , Escherichia coli/metabolism , Lactates/isolation & purification , Resins, Synthetic/chemistry , Adsorption , Chromatography/instrumentation , Escherichia coli/chemistry , Escherichia coli/genetics , Fermentation , Lactates/metabolism , Porosity , Resins, Synthetic/chemical synthesis
19.
ACS Synth Biol ; 13(6): 1916-1924, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861476

ABSTRACT

Betanin is a water-soluble red-violet pigment belonging to the betacyanins family. It has become more and more attractive for its natural food colorant properties and health benefits. However, the commercial production of betanin, typically extracted from red beetroot, faces economic and sustainability challenges. Microbial heterologous production therefore offers a promising alternative. Here, we performed combinatorial engineering of plant P450 enzymes and precursor metabolisms to improve the de novo production of betanin in Saccharomyces cerevisiae. Semirational design by computer simulation and molecular docking was used to improve the catalytic activity of CYP76AD. Alanine substitution and site-directed saturation mutants were screened, with a combination mutant showing an approximately 7-fold increase in betanin titer compared to the wild type. Subsequently, betanin production was improved by enhancing the l-tyrosine pathway flux and UDP-glucose supply. Finally, after optimization of the fermentation process, the engineered strain BEW10 produced 134.1 mg/L of betanin from sucrose, achieving the highest reported titer of betanin in a shake flask by microbes. This work shows the P450 enzyme and metabolic engineering strategies for the efficient microbial production of natural complex products.


Subject(s)
Betacyanins , Cytochrome P-450 Enzyme System , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Betacyanins/metabolism , Betacyanins/biosynthesis , Metabolic Engineering/methods , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Molecular Docking Simulation , Fermentation
20.
Synth Syst Biotechnol ; 9(2): 187-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385148

ABSTRACT

Benzyl and phenylpropanoid acids are widely used in organic synthesis of fine chemicals, such as pharmaceuticals and condiments. However, biocatalysis of these acids has received less attention than chemical synthesis. One of the main challenges for biological production is the limited availability of alcohol dehydrogenases and aldehyde dehydrogenases. Environmental microorganisms are potential sources of these enzymes. In this study, 129 alcohol dehydrogenases and 42 aldehyde dehydrogenases from Corynebacterium glutamicum, Pseudomonas aeruginosa, and Bacillus subtilis were identified and explored with various benzyl and phenylpropanoid alcohol and aldehyde substrates, among which four alcohol dehydrogenases and four aldehyde dehydrogenases with broad substrate specificity and high catalytic activity were obtained. Moreover, a cascade whole-cell catalytic system including ADH-90, ALDH-40, and the NAD(P)H oxidase LreNox was established, which showed high efficiency in converting cinnamyl alcohol and p-methylbenzyl alcohol into the respective carboxylic acids. Remarkably, this biocatalytic system can be easily scaled up to gram-level production, facilitating preparation purposes.

SELECTION OF CITATIONS
SEARCH DETAIL