Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Environ Sci (China) ; 143: 176-188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644015

ABSTRACT

One-stage partial nitrification coupled with anammox (PN/A) technology effectively reduces the energy consumption of a biological nitrogen removal system. Inhibiting nitrite-oxidizing bacteria (NOB) is essential for this technology to maintain efficient nitrogen removal performance. Initial ammonium concentration (IAC) affects the degree of inhibited NOB. In this study, the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor. The results showed that nitrogen removal efficiency decreased from 82.49% ± 1.90% to 64.57% ± 3.96% after the IAC was reduced from 60 to 20 mg N/L, while the nitrate production ratio increased from 13.87% ± 0.90% to 26.50% ± 3.76%. NOB activity increased to 1,133.86 mg N/m2/day after the IAC decreased, approximately 4-fold, indicating that the IAC plays an important inhibitory role in NOB. The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC. The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure. Ca. Brocadia and Ca. Jettenia were the main anammox bacteria, and Nitrosomonas and Nitrospira were the main AOB and NOB, respectively. IAC did not affect the difference in growth between Ca. Brocadia and Ca. Jettenia. Thus, modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.


Subject(s)
Ammonium Compounds , Biofilms , Bioreactors , Nitrification , Nitrogen , Ammonium Compounds/metabolism , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Bacteria/metabolism , Microbiota
2.
Plant Biotechnol J ; 21(4): 819-838, 2023 04.
Article in English | MEDLINE | ID: mdl-36597711

ABSTRACT

Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.


Subject(s)
Oryza , Thermotolerance , Thermotolerance/genetics , Oryza/metabolism , Catalase/genetics , Catalase/metabolism , Isoenzymes/metabolism , Plant Breeding , Edible Grain , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
3.
Immunol Invest ; 52(6): 703-716, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37401665

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is a rare rheumatic disease characterized by vascular damage, dysregulated immune response, and fibrosis. Interleukin-11 (IL-11) is upregulated in SSc. This study aimed to investigate the pathological and therapeutic role of the IL-11 trans-signaling pathway in SSc. METHODS: Plasma IL-11 level was evaluated in 32 patients with SSc and 15 healthy controls, while the expression levels of ADAM10, ADAM17, IL-11, IL-11 Rα, or IL-11 co-stained with CD3 or CD163 in the skin of SSc patients and healthy controls were analyzed. Fibroblasts were treated with IL-11 and ionomycin to evaluate the profibrotic effect of IL-11 trans-signaling pathway. TJ301 (sgp130Fc) and WP1066 (a JAK2/STAT3 inhibitor) intervention groups were set up to investigate the antifibrotic effect of targeting IL-11. RESULTS: Levels of plasma IL-11 were extremely low in most SSc patients and healthy controls. In contrast, levels of IL-11, IL-11 Rα, and ADAM10, but not ADAM17, were significantly elevated in the skin of SSc patients. Moreover, the numbers of IL-11+ CD3+ cells and IL-11+ CD163+ cells were increased in the skin of SSc patients. Besides, IL-11 and ADAM10 were also elevated in the skin and pulmonary of bleomycin-induced SSc mouse. Fibroblasts co-stimulated with IL-11 and ionomycin showed increased expression of COL3 and phosphorylation of STAT3, which could be inhibited by TJ301 or WP1066. TJ301 also ameliorated skin and lung fibrosis in BLM-induced SSc mouse. CONCLUSIONS: IL-11 induces fibrosis in SSc by regulating the trans-signaling pathway. Blockage of sgp130Fc or inhibition of the JAK2/STAT3 pathway could ameliorate the profibrotic effect of IL-11.


Subject(s)
Interleukin-11 , Scleroderma, Systemic , Humans , Animals , Mice , Interleukin-11/adverse effects , Interleukin-11/metabolism , Ionomycin/adverse effects , Ionomycin/metabolism , Fibrosis , Scleroderma, Systemic/drug therapy , Skin/pathology , Signal Transduction , Fibroblasts/pathology , Janus Kinase 2/adverse effects , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism
4.
J Environ Manage ; 332: 117425, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36739777

ABSTRACT

Thermal hydrolyzed sludge filtrate (THSF) rich in biodegradable organics could be a promising external carbon source for biological nutrient removal (BNR). The use of THSF can effectively reduce wastewater treatment plants operating costs and recover bioresources and bioenergy from the waste activated sludge. In this study, the effect of THSF on the BNR process was investigated using a lab-scale anaerobic/anoxic/oxic (A2/O) system. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 74.26 ± 3.36% and 92.20 ± 3.13% at a 0.3% dosing ratio were achieved, respectively. Moreover, 20.42% of the chemical oxygen demand (COD) contained in THSF contributed to denitrification, enhancing nitrogen removal efficiency from 55.30 to 74.26%. However, the effluent COD increased by approximately 36.80%, due to 18.39% of the COD contained in THSF discharged with effluent. In addition, the maximum denitrification rate was approximately 16.01 mg N g VSS-1 h-1, while the nitrification rate was not significantly affected by THSF. Nitrosomonas, a common chemoautotrophic nitrifier, was not detected after the introduction of THSF. The aerobic denitrifier Rubellimicrobium was stimulated, and its relative abundance increased from 0.16 to 3.03%. Moreover, the relative abundance of Dechloromonas was 3.93%, indicating that the denitrifying phosphorus removal process was enhanced. This study proposes an engineering application route of THSF, and the chemical phosphate removal pretreatment might be a means to suppress the phosphate recirculation.


Subject(s)
Sewage , Wastewater , Waste Disposal, Fluid , Carbon , Denitrification , Bioreactors , Nitrification , Phosphorus , Phosphates , Nitrogen , Nutrients
5.
Macromol Rapid Commun ; 43(19): e2200221, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35686731

ABSTRACT

Polymer welding has received numerous scientific attention, however, the welding of polymer nanocomposites (PNCs) has not been studied yet. In this work, via coarse-grained molecular dynamics simulation, the attention on investigating the welding interfacial structure, dynamics, and strength by constructing the upper and lower layers of PNCs, by varying the polymer-nanoparticle (NP) interaction strength εNP-p is focused. Remarkably, at low εNP-p , the NPs gradually migrate into the top and bottom surface layer perpendicular to the z direction during the adhesion process, while they are distributed in the middle region at high εNP-p . Meanwhile, the dimension of polymer chains is found to exhibit a remarkable anisotropy evidenced by the root-mean-square radius of gyration in the xy- (Rg,xy ) and z- (Rg,z ) component. The welding interdiffusion depth increases the fastest at low εNP-p , attributed to the high mobility of polymer chains and NPs. Lastly, although the mechanical properties of PNCs at high εNP-p is the strongest because of the presence of the NPs in the bulk region, the welding efficiency is the greatest at low εNP-p . Generally, this work provides a fundamental understanding of the interfacial welding of PNCs, in hopes of guiding to design and fabricate excellent self-healable PNCs.

6.
J Environ Manage ; 314: 115084, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35452886

ABSTRACT

An efficient and precise method is needed for low H2S content biogas biodesulfurization, produced during high solid sludge anaerobic digestion. Continuous experiments were conducted to evaluate the performance of a lab-scale biotrickling filter (BTF) in H2S removal and oxygen utilization. The results show that the sulfur loading rate decreased by 66% compared to conventional H2S content, thus achieving a sufficient removal efficiency (>0.9). With a limited external aeration (0.5-2.0 molO2·molS-1), the oxygen consumption (O/Sre) to its supplement (O/Sin) ratios increased from 50-71% (conventional H2S) to 83-92% (low H2S), indicating that low H2S flux promotes a sufficient oxygen utilization. Furthermore, the difference in oxygen utilization between co-current and counter-current flow patterns decreased under limited external aeration as the H2S content sharply decreased. These results indicate that a dynamic oxygen-sulfur (O-S) balanced multistage BTF is expected to achieve a more precise vertical O-S distribution for sulfur resource recovery.


Subject(s)
Biofuels , Hydrogen Sulfide , Anaerobiosis , Bioreactors , Filtration/methods , Oxygen , Sewage , Sulfur
7.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500553

ABSTRACT

This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.


Subject(s)
Copper , Cyclization , Catalysis , Molecular Structure
8.
J Cell Physiol ; 235(9): 5951-5961, 2020 09.
Article in English | MEDLINE | ID: mdl-32026468

ABSTRACT

Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.


Subject(s)
Bone Diseases, Metabolic/drug therapy , Bone Resorption/drug therapy , Ellagic Acid/pharmacology , Osteoporosis/drug therapy , Animals , Bone Density Conservation Agents/pharmacology , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Bone Resorption/genetics , Bone Resorption/pathology , Cell Differentiation/drug effects , Humans , Mice , NF-kappa B , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis/etiology , Osteoporosis/genetics , Osteoporosis/pathology , Ovariectomy/adverse effects , RAW 264.7 Cells , Signal Transduction/drug effects
9.
Carcinogenesis ; 40(2): e1-e13, 2019 04 29.
Article in English | MEDLINE | ID: mdl-29635391

ABSTRACT

Osteosarcoma is the most frequent primary bone tumor in children and adolescents. The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is an attractive anticancer target because it plays key roles in the regulation of cell growth, division and differentiation. In this study, we demonstrated high expression of PI3K/mTOR signaling pathway-related genes in patients with osteosarcoma. We thus investigated the effects of A005, a newly synthesized dual PI3K/mTOR inhibitor, on osteosarcoma cells and in a mouse xenograft tumor model. The results confirmed that A005 inhibited the proliferation, migration and invasion of human osteosarcoma cells. In addition, A005 also inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and bone resorption in vitro. Therefore, A005 was further applied to a SaOS-2 osteosarcoma-induced mouse osteolysis model. A005 inhibited tumor growth and prevented osteosarcoma-associated osteolysis via modulation of the PI3K/AKT/mTOR pathway. Overall, our results showed that A005 inhibited osteoclastogenesis and prevented osteosarcoma-induced bone osteolysis by suppressing PI3K/AKT/mTOR signaling. These findings indicated that A005 may be a promising candidate drug for the treatment of human osteosarcoma.

10.
BMC Infect Dis ; 19(1): 323, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30987605

ABSTRACT

BACKGROUND: To investigate the diagnostic value of the interferon-γ release assay (IGRA) for detecting tuberculosis (TB) infection in patients with Behçet's disease (BD). METHODS: We retrospective analyzed the data collected from 173 BD patients hospitalized between 2010 and 2015. Ninety-nine healthy volunteers were enrolled as a control group. IGRA was performed using T-SPOT.TB. The diagnosis of active TB (ATB) was based on clinical, radiological, microbiological, histopathological information and the response to anti-TB therapy. Latent TB (LTB) infection was defined as asymptomatic patients with positive T-SPOT.TB. RESULTS: TB infection was documented in 59 BD patients (34.1%). The sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio and negative likelihood ratio of T-SPOT.TB for the diagnosis of ATB were 88.9%, 74.8%, 29.1%, 98.3%, 3.53 and 0.15, respectively. The receiver-operating-characteristic curve demonstrated that spot-forming cells (SFCs) of 70/106 PBMC was the optimal cutoff for diagnosing ATB, with an area under the curve of 0.891. Furthermore, the median SFCs in ATB group was significantly higher than those in LTB infection (466/106 PBMC vs. 68/106 PBMC, p = 0.007) or previous TB infection (466/106 PBMC vs. 96/106 PBMC, p = 0.018). A significant discrepancy between T-SPOT.TB and tuberculin skin test was noted (kappa coefficient = 0.391, p = 0.002). CONCLUSIONS: T-SPOT.TB, an IGRA, may assist in the diagnosis of ATB in BD patients, and the higher SFCs suggest ATB in BD patients.


Subject(s)
Behcet Syndrome/microbiology , Interferon-gamma Release Tests/methods , Tuberculosis/diagnosis , Adult , Behcet Syndrome/complications , Female , Humans , Latent Tuberculosis/diagnosis , Leukocytes, Mononuclear , Male , Middle Aged , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Tuberculin Test
11.
Int J Mol Sci ; 20(4)2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30781568

ABSTRACT

In molecular breeding of super rice, it is essential to isolate the best quantitative trait loci (QTLs) and genes of leaf shape and explore yield potential using large germplasm collections and genetic populations. In this study, a recombinant inbred line (RIL) population was used, which was derived from a cross between the following parental lines: hybrid rice Chunyou84, that is, japonica maintainer line Chunjiang16B (CJ16); and indica restorer line Chunhui 84 (C84) with remarkable leaf morphological differences. QTLs mapping of leaf shape traits was analyzed at the heading stage under different environmental conditions in Hainan (HN) and Hangzhou (HZ). A major QTL qLL9 for leaf length was detected and its function was studied using a population derived from a single residual heterozygote (RH), which was identified in the original population. qLL9 was delimitated to a 16.17 kb region flanked by molecular markers C-1640 and C-1642, which contained three open reading frames (ORFs). We found that the candidate gene for qLL9 is allelic to DEP1 using quantitative real-time polymerase chain reaction (qRT-PCR), sequence comparison, and the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR/Cas9) genome editing techniques. To identify the effect of qLL9 on yield, leaf shape and grain traits were measured in near isogenic lines (NILs) NIL-qLL9CJ16 and NIL-qLL9C84, as well as a chromosome segment substitution line (CSSL) CSSL-qLL9KASA with a Kasalath introgressed segment covering qLL9 in the Wuyunjing (WYJ) 7 backgrounds. Our results showed that the flag leaf lengths of NIL-qLL9C84 and CSSL-qLL9KASA were significantly different from those of NIL-qLL9CJ16 and WYJ 7, respectively. Compared with NIL-qLL9CJ16, the spike length, grain size, and thousand-grain weight of NIL-qLL9C84 were significantly higher, resulting in a significant increase in yield of 15.08%. Exploring and pyramiding beneficial genes resembling qLL9C84 for super rice breeding could increase both the source (e.g., leaf length and leaf area) and the sink (e.g., yield traits). This study provides a foundation for future investigation of the molecular mechanisms underlying the source⁻sink balance and high-yield potential of rice, benefiting high-yield molecular design breeding for global food security.


Subject(s)
Edible Grain/genetics , Oryza/genetics , Plant Leaves/genetics , Quantitative Trait Loci/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Edible Grain/growth & development , Genotype , Oryza/growth & development , Phenotype , Plant Leaves/growth & development
12.
Cell Biochem Funct ; 36(3): 129-136, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29464742

ABSTRACT

GdX, also named ubiquitin-like protein 4A, is a ubiquitin-domain protein characterized by a ubiquitin-like domain that regulates the movement of misfolded proteins from the endoplasmic reticulum membrane to proteasome. However, its function in skeletal biology remains unclear. Here, we report that GdX plays a crucial role in skeletal development as mice lacking GdX exhibit skeletal dysplasias, mild kyphosis, and scoliosis. During embryonic stage, GdX knockout mice display decreased bone mineral density and trabecular bone accompanied by delayed osteogenic formation. GdX knockout mice also have blended spine and small body size. At the molecular level, GdX knockout mice showed perturbed expression of osteogenesis-related genes and cartilage developmental genes, indicative of altered differentiation of mesenchymal cell lineage. Collectively, our results uncovered GdX as a novel regulator in bone development and a potential candidate gene for skeletal dysplasias.


Subject(s)
Chondrogenesis , Kyphosis/metabolism , Osteoblasts/metabolism , Osteogenesis , Scoliosis/metabolism , Ubiquitins/metabolism , Animals , Cells, Cultured , Mice, Knockout , Ubiquitins/deficiency
14.
Materials (Basel) ; 17(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38473629

ABSTRACT

The field of P-band (0.3-1 GHz) absorption has witnessed rapid development in metamaterial absorbers due to their exceptional designability and the absence of restrictions imposed by the one-fourth wavelength rule. In this study, we combined carbonyl iron powder (CIP) composites with a periodic structure composed of metal capacitive patterns and employed a genetic algorithm (GA) to optimize the electromagnetic parameters of the CIP substrate. By selecting the appropriate shape and material for the units of pattern based on transmission line theory, as well as regulating relevant structural parameters, we successfully designed an ultra-thin broadband metamaterial absorber for the P-band. Experimental results demonstrate that within the range of 0.3-0.85 GHz, the reflection loss of our absorber remains below -5 dB, with a maximum value of -9.54 dB occurring at 0.45 GHz. Remarkably, this absorber possesses a thickness equivalent to only 1/293 of its working wavelength. Then, we conducted analyses on electric field distribution, magnetic field distribution, and energy loss density. Our findings suggest that high-performance absorption in metamaterials can be attributed to λ/4 resonant or coupling effects between structural units or diffraction phenomena. This absorber offers several advantages, including broad low-frequency absorption capability, ultra-thin profile, and convenient fabrication process, thus providing valuable theoretical insights for designing metamaterial structures.

15.
Front Bioeng Biotechnol ; 12: 1408361, 2024.
Article in English | MEDLINE | ID: mdl-38784766

ABSTRACT

Microbial degradation of petroleum hydrocarbons plays a vital role in mitigating petroleum contamination and heavy oil extraction. In this study, a Saccharomyces cerevisiae capable of degrading hexadecane has been successfully engineered, achieving a maximum degradation rate of up to 20.42%. However, the degradation ability of this strain decreased under various pressure conditions such as high temperature, high osmotic pressure, and acidity conditions. Therefore, a S. cerevisiae with high tolerance to these conditions has been constructed. And then, we constructed an "anti-stress hydrocarbon-degrading" consortium comprising engineered yeast strain SAH03, which degrades hexadecane, and glutathione synthetic yeast YGSH10, which provides stress resistance. This consortium was able to restore the degradation ability of SAH03 under various pressure conditions, particularly exhibiting a significant increase in degradation rate from 5.04% to 17.04% under high osmotic pressure. This study offers a novel approach for improving microbial degradation of petroleum hydrocarbons.

16.
Appl Clin Inform ; 15(1): 192-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38253337

ABSTRACT

BACKGROUND: Despite mortality benefits, only 19.9% of U.S. adults are fully vaccinated against the coronavirus disease 2019 (COVID-19). The inpatient setting is an opportune environment to update vaccinations, and inpatient electronic health record (EHR) alerts have been shown to increase vaccination rates. OBJECTIVE: Our objective was to evaluate whether an EHR alert could increase COVID-19 vaccinations in eligible hospitalized adults by prompting providers to order the vaccine. METHODS: This was a quasiexperimental pre-post-interventional design study at an academic and community hospital in the western United States between 1 January, 2021 and 31 October, 2021. Inclusion criteria were unvaccinated hospitalized adults. A soft-stop, interruptive EHR alert prompted providers to order COVID-19 vaccines for those with an expected discharge date within 48 hours and interest in vaccination. The outcome measured was the proportion of all eligible patients for whom vaccines were ordered and administered before and after alert implementation. RESULTS: Vaccine ordering rates increased from 4.0 to 13.0% at the academic hospital (odds ratio [OR]: 4.01, 95% confidence interval [CI]: 3.39-4.74, p < 0.001) and from 7.4 to 11.6% at the community hospital (OR: 1.62, 95% CI: 1.23-2.13, p < 0.001) after alert implementation. Administration increased postalert from 3.6 to 12.7% at the academic hospital (OR: 3.21, 95% CI: 2.70-3.82, p < 0.001) but was unchanged at the community hospital, 6.7 to 6.7% (OR: 0.99, 95% CI: 0.73-1.37, p = 0.994). Further analysis revealed infrequent vaccine availability at the community hospital. CONCLUSION: Vaccine ordering rates improved at both sites after alert implementation. Vaccine administration rates, however, only improved at the academic hospital, likely due in part to vaccine dispensation inefficiency at the community hospital. This study demonstrates the potential impact of complex workflow patterns on new EHR alert success and provides a rationale for subsequent qualitative workflow analysis with alert implementation.


Subject(s)
COVID-19 , Electronic Health Records , Adult , Humans , Inpatients , COVID-19 Vaccines , Workflow , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
17.
Nat Commun ; 15(1): 6177, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039081

ABSTRACT

The ankyrin (ANK) SOCS box (ASB) family, encompassing ASB1-18, is the largest group of substrate receptors of cullin 5 Ring E3 ubiquitin ligase. Nonetheless, the mechanism of substrate recognition by ASB family proteins has remained largely elusive. Here we present the crystal structure of ASB7-Elongin B-Elongin C ternary complex bound to a conserved helical degron. ASB7 employs its ANK3-6 to form an extended groove, effectively interacting with the internal α-helix-degron through a network of side-chain-mediated electrostatic and hydrophobic interactions. Our structural findings, combined with biochemical and cellular analyses, identify the key residues of the degron motif and ASB7 required for their recognition. This will facilitate the identification of additional physiological substrates of ASB7 by providing a defined degron motif for screening. Furthermore, the structural insights provide a basis for the rational design of compounds that can specifically target ASB7 by disrupting its interaction with its cognate degron.


Subject(s)
Protein Binding , Suppressor of Cytokine Signaling Proteins , Humans , Crystallography, X-Ray , Suppressor of Cytokine Signaling Proteins/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ankyrins/metabolism , Ankyrins/chemistry , Ankyrins/genetics , Models, Molecular , Elongin/metabolism , Elongin/genetics , Elongin/chemistry , HEK293 Cells , Amino Acid Motifs , Degrons
18.
Dalton Trans ; 53(2): 666-674, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38073603

ABSTRACT

Although antibacterial platforms involving nanozymes have been extensively investigated, there are still problems of poor reactive oxygen species generation efficiency and obstinate bacterial biofilms. Developing a nanozyme-photothermal therapy nanoplatform with superior sterilization effects and minimal side effects would be a good alternative for completely eliminating bacteria and biofilms. Herein, an ultrathin PdMo bimetallene nanozyme with a planar topology and boosted metal utilization, exhibiting excellent photothermal and peroxidase-like activity, is designed for synergistic nanozyme-photothermal sterilization applications and accelerated wound healing. The superior catalytic activity of PdMo bimetallene nanozymes could convert a biosafe concentration of hydrogen peroxide (H2O2) into large quantities of toxic hydroxyl radicals (•OH) under laser irradiation, enhancing bacterial membrane permeability and thermal sensitivity for efficient removal of bacteria and biofilms. In addition, PdMo bimetallene presents a good wound-healing ability according to the results of fibroblast proliferation and collagen deposition with minor side effects. This work would provide an innovative avenue for developing metallene-based nanozymes for biomedical applications.


Subject(s)
Hydrogen Peroxide , Wound Healing , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Cell Membrane Permeability
19.
J Nat Med ; 77(1): 41-52, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35984592

ABSTRACT

Gossypol acetate (GA), as the product of racemic gossypol and acetic acid conjugated by hydrogen bond, is hydrolyzed into gossypol to exert its effect on treating uterine leiomyoma (UL), which has been listed in China. But hypokalemia and mild changes of liver function limit its clinical application. It had been reported that the biological activities of gossypol optical isomers were different. In this study, we aimed to clarify whether there were differences in the efficacy of gossypol enantiomers and whether a single gossypol optical isomer could alleviate adverse reactions in the treatment of UL. The results indicated that (-)-GA and (+)-GA had significant therapeutic effect on rats with UL. Interestingly, (-)-GA could better significantly ameliorate the pathological structure, inhibit the secretion of estrogen, and downregulate the expression of estrogen receptor-alpha (ER-α) and progesterone receptor (PR) than (+)-GA. Additionally, (-)-GA could better evidently decrease the symptoms of abnormally elevated inflammatory factors caused by UL. In contrast, (-)-GA and (+)-GA had certain effects on potassium ion concentration in serum, liver and kidney function, and the effects of (+)-GA on liver function were more obvious than (-)-GA. These findings will be of great significance to the drug development of gossypol optical isomers.


Subject(s)
Gossypol , Leiomyoma , Rats , Animals , Gossypol/adverse effects , Leiomyoma/chemically induced , Stereoisomerism , China
20.
PeerJ Comput Sci ; 9: e1746, 2023.
Article in English | MEDLINE | ID: mdl-38259682

ABSTRACT

In robot-assisted surgical systems, surgical instrument segmentation is a critical task that provides important information for surgeons to make informed decisions and ensure surgical safety. However, current mainstream models often lack precise segmentation edges and suffer from an excess of parameters, rendering their deployment challenging. To address these issues, this article proposes a lightweight semantic segmentation model based on edge refinement and efficient self-attention. The proposed model utilizes a lightweight densely connected network for feature extraction, which is able to extract high-quality semantic information with fewer parameters. The decoder combines a feature pyramid module with an efficient criss-cross self-attention module. This fusion integrates multi-scale data, strengthens focus on surgical instrument details, and enhances edge segmentation accuracy. To train and evaluate the proposed model, the authors developed a private dataset of endoscopic surgical instruments. It containing 1,406 images for training, 469 images for validation and 469 images for testing. The proposed model performs well on this dataset with only 466 K parameters, achieving a mean Intersection over Union (mIoU) of 97.11%. In addition, the model was trained on public datasets Kvasir-instrument and Endovis2017. Excellent results of 93.24% and 95.83% were achieved on the indicator mIoU, respectively. The superiority and effectiveness of the method are proved. Experimental results show that the proposed model has lower parameters and higher accuracy than other state-of-the-art models. The proposed model thus lays the foundation for further research in the field of surgical instrument segmentation.

SELECTION OF CITATIONS
SEARCH DETAIL