Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 18(10): e1010499, 2022 10.
Article in English | MEDLINE | ID: mdl-36240261

ABSTRACT

Severe dengue virus (DENV) infection is characterized by exacerbated inflammatory responses that lead to endothelial dysfunction and plasma leakage. We have recently demonstrated that Toll-like receptor 2 (TLR2) on blood monocytes senses DENV infection leading to endothelial activation. Here, we report that non-infectious immature DENV particles, which are released in large numbers by DENV-infected cells, drive endothelial activation via the TLR2 axis. We show that fully immature DENV particles induce a rapid, within 6 hours post-infection, inflammatory response in PBMCs. Furthermore, pharmacological blocking of TLR2/TLR6/CD14 and/or NF-kB prior to exposure of PBMCs to immature DENV reduces the initial production of inter alia TNF-α and IL-1ß by monocytes and prevents endothelial activation. However, prolonged TLR2 block induces TNF-α production and leads to exacerbated endothelial activation, indicating that TLR2-mediated responses play an important role not only in the initiation but also the resolution of inflammation. Altogether, these data indicate that the maturation status of the virus has the potential to influence the kinetics and extent of inflammatory responses during DENV infection.


Subject(s)
Dengue Virus , Dengue , Humans , Toll-Like Receptor 2 , Leukocytes, Mononuclear , Toll-Like Receptor 6 , Tumor Necrosis Factor-alpha , NF-kappa B , Inflammation , Virion
2.
Nanomedicine ; 45: 102595, 2022 09.
Article in English | MEDLINE | ID: mdl-36031045

ABSTRACT

The development of safe and effective vaccine formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a hallmark in the history of vaccines. Here we report a COVID-19 subunit vaccine based on a SARS-CoV-2 Spike protein receptor binding domain (RBD) incorporated into nano-multilamellar vesicles (NMV) associated with monophosphoryl lipid A (MPLA). The results based on immunization of C57BL/6 mice demonstrated that recombinant antigen incorporation into NMVs improved antibody and T-cell responses without inducing toxic effects under both in vitro and in vivo conditions. Administration of RBD-NMV-MPLA formulations modulated antigen avidity and IgG subclass responses, whereas MPLA incorporation improved the activation of CD4+/CD8+ T-cell responses. In addition, immunization with the complete vaccine formulation reduced the number of doses required to achieve enhanced serum virus-neutralizing antibody titers. Overall, this study highlights NMV/MPLA technology, displaying the performance improvement of subunit vaccines against SARS-CoV-2, as well as other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipids , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
3.
Mol Ther ; 28(7): 1569-1584, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32359470

ABSTRACT

Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.


Subject(s)
Antigens, Viral/genetics , Influenza A Virus, H1N1 Subtype/immunology , Nucleosides/chemistry , Orthomyxoviridae Infections/prevention & control , Vaccines, Synthetic/administration & dosage , Animals , Antibodies, Viral/metabolism , Antigens, Viral/chemistry , Disease Models, Animal , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Injections, Intradermal , Liposomes , Mice , NIH 3T3 Cells , Nanoparticles , Neuraminidase/chemistry , Neuraminidase/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Orthomyxoviridae Infections/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , mRNA Vaccines
4.
Nanomedicine ; 32: 102334, 2021 02.
Article in English | MEDLINE | ID: mdl-33188909

ABSTRACT

Self-assembling proteins may be generated after the addition of short specific amino acid sequences at both the N- and C-terminal ends. To date, this approach has not been evaluated regarding the impact of self-assembled proteins on the induction of immune responses. In the present study, we report the application of this experimental approach to the immunogenicity of protein antigens by measuring the antibody responses in mice immunized with nanoparticles made with a recombinant form of Zika virus nonstructural protein 1 (∆NS1). The results clearly indicated that ∆NS1-derived nanoparticles (NP-∆NS1) are assembled into a 3-dimensional structure with a high degree of multimerization. While ∆NS1 proved to be a weak immunogen, immunization with NP-∆NS1 enhanced subunit vaccines' immunogenicity with improved longevity in vaccinated mice. Thus, immunization with self-assembled antigens (nanovaccines) represents a new and promising strategy to enhance NS1-specific antibodies' induction based on purified recombinant proteins.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , Nanoparticles/chemistry , Viral Nonstructural Proteins/immunology , Viral Vaccines/immunology , Zika Virus/immunology , Animals , Epitopes/immunology , Female , Immunization , Immunoglobulin G/metabolism , Mice, Inbred C57BL
5.
Nanomedicine ; 37: 102445, 2021 10.
Article in English | MEDLINE | ID: mdl-34303841

ABSTRACT

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Subject(s)
Chikungunya Fever/immunology , Chikungunya virus/immunology , Liposomes/immunology , Viral Envelope Proteins/genetics , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/drug effects , Antibodies, Viral/immunology , Chikungunya Fever/therapy , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Humans , Liposomes/chemistry , Liposomes/pharmacology , Mice , Nanoparticles/chemistry , Viral Envelope Proteins/pharmacology , Viral Vaccines/immunology
6.
BMC Biotechnol ; 18(1): 78, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30541520

ABSTRACT

BACKGROUND: Proteins in inclusion bodies (IBs) present native-like secondary structures. However, chaotropic agents at denaturing concentrations, which are widely used for IB solubilization and subsequent refolding, unfold these secondary structures. Removal of the chaotropes frequently causes reaggregation and poor recovery of bioactive proteins. High hydrostatic pressure (HHP) and alkaline pH are two conditions that, in the presence of low level of chaotropes, have been described as non-denaturing solubilization agents. In the present study we evaluated the strategy of combination of HHP and alkaline pH on the solubilization of IB using as a model an antigenic form of the zika virus (ZIKV) non-structural 1 (NS1) protein. RESULTS: Pressure-treatment (2.4 kbar) of NS1-IBs at a pH of 11.0 induced a low degree of NS1 unfolding and led to solubilization of the IBs, mainly into monomers. After dialysis at pH 8.5, NS1 was refolded and formed soluble oligomers. High (up to 68 mg/liter) NS1 concentrations were obtained by solubilization of NS1-IBs at pH 11 in the presence of arginine (Arg) with a final yield of approximately 80% of total protein content. The process proved to be efficient, quick and did not require further purification steps. Refolded NS1 preserved biological features regarding reactivity with antigen-specific antibodies, including sera of ZIKV-infected patients. The method resulted in an increase of approximately 30-fold over conventional IB solubilization-refolding methods. CONCLUSIONS: The present results represent an innovative non-denaturing protein refolding process by means of the concomitant use of HHP and alkaline pH. Application of the reported method allowed the recovery of ZIKV NS1 at a condition that maintained the antigenic properties of the protein.


Subject(s)
Biochemistry/methods , Inclusion Bodies/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/metabolism , Alkalies/chemistry , Hydrostatic Pressure , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Protein Refolding , Protein Structure, Secondary , Solubility , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/chemistry , Zika Virus/genetics
7.
Immunol Cell Biol ; 93(10): 868-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25953029

ABSTRACT

DNA vaccines have failed to induce satisfactory immune responses in humans. Several mechanisms of double-stranded DNA (dsDNA) sensing have been described, and modulate DNA vaccine immunogenicity at many levels. We hypothesized that the immunogenicity of DNA vaccines in humans is suppressed by APOBEC (apolipoprotein B (APOB) mRNA-editing, catalytic polypeptide)-mediated plasmid degradation. We showed that plasmid sensing via STING (stimulator of interferon (IFN) genes) and TBK-1 (TANK-binding kinase 1) leads to IFN-ß induction, which results in APOBEC3A mRNA upregulation through a mechanism involving protein kinase C signaling. We also showed that murine APOBEC2 expression in HEK293T cells led to a 10-fold reduction in intracellular plasmid levels and plasmid-encoded mRNA, and a 2.6-fold reduction in GFP-expressing cells. A bicistronic DNA vaccine expressing an immunogen and an APOBEC2-specific shRNA efficiently silenced APOBEC2 both in vitro and in vivo, increasing the frequency of induced IFN-γ-secreting T cells. Our study brings new insights into the intracellular machinery involved in dsDNA sensing and how to modulate it to improve DNA vaccine immunogenicity in humans.


Subject(s)
Apolipoproteins B/metabolism , Cytidine Deaminase/metabolism , HIV-1/physiology , Muscle Proteins/metabolism , Proteins/metabolism , T-Lymphocytes/immunology , Vaccines, DNA/immunology , APOBEC Deaminases , Animals , Antigens, Viral/genetics , Apolipoproteins B/genetics , Cytidine Deaminase/genetics , HEK293 Cells , HLA-DR Antigens/genetics , Humans , Immunomodulation , Interferon-beta/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Muscle Proteins/genetics , Peptide Fragments/genetics , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , RNA Editing , RNA, Small Interfering/genetics , Signal Transduction/genetics , Transgenes/genetics , Vaccines, DNA/genetics
8.
Microbiol Spectr ; 11(6): e0289223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37966210

ABSTRACT

IMPORTANCE: The emergence of SARS-CoV-2 had a major impact across the world. It is true that the collaboration of scientists from all over the world resulted in a rapid response against COVID-19, mainly with the development of vaccines against the disease. However, many viral genetic variants that threaten vaccines have emerged. Our study reveals highly conserved antigenic regions in the vaccines have emerged. Our study reveals highly conserved antigenic regions in the spike protein in all variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) as well as in the wild-type virus. Such immune targets can be used to fight future SARS-CoV-2 variants.


Subject(s)
COVID-19 , Physicians , Vaccines , Humans , SARS-CoV-2/genetics
9.
Pharmaceutics ; 15(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37111682

ABSTRACT

By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.

10.
Front Immunol ; 14: 1071041, 2023.
Article in English | MEDLINE | ID: mdl-37006270

ABSTRACT

Introduction: In the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes. Methods: In this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV. Results: Testing of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses. Conclusion: In conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/genetics , Viral Envelope Proteins/chemistry , Antibodies, Viral , Drosophila melanogaster , Escherichia coli/genetics , Mice, Inbred C57BL , Vaccines, Subunit
11.
Sci Transl Med ; 15(686): eabn3464, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36867683

ABSTRACT

As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.


Subject(s)
Cancer Vaccines , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Vaccines, DNA , Animals , Female , Mice , CD8-Positive T-Lymphocytes , Disease Models, Animal , Immunization , Mice, Inbred C57BL , Neoplasms/therapy , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/genetics , Recombinant Proteins , RNA, Messenger/genetics
12.
Sci Rep ; 13(1): 16821, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798298

ABSTRACT

Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.


Subject(s)
COVID-19 , Pyrococcus furiosus , Humans , Animals , Mice , Epitopes , Spike Glycoprotein, Coronavirus/metabolism , Pyrococcus furiosus/metabolism , Antibodies, Viral , Viral Envelope Proteins , SARS-CoV-2 , Peptides/chemistry , Antibodies, Neutralizing
13.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36992364

ABSTRACT

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Subject(s)
Viral Nonstructural Proteins , Zika Virus Infection , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Peptides , Serologic Tests , Viral Nonstructural Proteins/isolation & purification , Zika Virus
14.
Braz J Microbiol ; 53(4): 1941-1949, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36098933

ABSTRACT

BACKGROUND: In recent years, several studies have demonstrated that bacterial ABC transporters present relevant antigen targets for the development of vaccines against bacteria such as Streptococcus pneumoniae and Enterococcus faecalis. In Streptococcus mutans, the glutamate transporter operon (glnH), encoding an ABC transporter, is associated with acid tolerance and represents an important virulence-associated factor for the development of dental caries. RESULTS: In this study, we generated a recombinant form of the S. mutans GlnH protein (rGlnH) in Bacillus subtilis. Mice immunized with this protein antigen elicited strong antigen-specific antibody responses after sublingual administration of a vaccine formulation containing a mucosal adjuvant, a non-toxic derivative of the heat-labile toxin (LTK63) originally produced by enterotoxigenic Escherichia coli (ETEC) strains. Serum anti-rGlnH antibodies reduced adhesion of S. mutans to the oral cavity of naïve mice. Moreover, mice actively immunized with rGlnH were partially protected from oral colonization after exposure to the S. mutans NG8 strain. CONCLUSIONS: Our results indicate that S. mutans rGlnH is a potential target antigen capable of inducing specific and protective antibody responses after immunization. Overall, these observations raise the prospect of the development of mucosal anti-caries vaccines.


Subject(s)
Dental Caries , Streptococcus mutans , Mice , Animals , Streptococcus mutans/genetics , Cariostatic Agents/metabolism , Antibodies, Bacterial , Carrier Proteins/metabolism , Glutamic Acid/metabolism , Dental Caries/prevention & control , Dental Caries/metabolism , Saliva/metabolism , Proteins/metabolism
15.
Braz J Microbiol ; 53(3): 1279-1287, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35460509

ABSTRACT

Sexual transmission of Zika virus (ZIKV), an important arbovirus, and the virus persistence in semen raise several questions about how and where it circulates in the male reproductive system (MRS). Several studies reported detection of the virus in testes, epididymis, and prostate at 5 days post-infection (dpi) or more in animal models. In the present study, we investigated the interactions of ZIKV with mouse MRS using the AG129 strain, a ZIKV permissive immunodeficient mouse strain, at two dpi. Viral RNA was detected in blood, testes, epididymis, and prostatic complexes (prostate and seminal vesicles). Immunohistochemical (IHC) analyses, based on the envelope protein, showed an early infection in organs of MRS since ZIKV positive antigens were detected in cells within or surrounding blood vessels, Sertoli, and germ cells in testes and epithelial cells in epididymis and prostate. Positive antigens for NS5 protein, the virus RNA-dependent RNA polymerase, were also detected by IHC in these organs and circulating leukocytes, suggesting that the virus replicates in these sites as early as 2 days post-infection. Analysis of the early stages of ZIKV infection in MRS may improve the current knowledge about this issue and contribute to the development of therapies directed to the infection at this site.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Genitalia, Male , Male , Mice , RNA, Viral/genetics , Semen , Zika Virus/genetics
16.
Front Microbiol ; 13: 1040093, 2022.
Article in English | MEDLINE | ID: mdl-36386719

ABSTRACT

Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.

17.
Oncoimmunology ; 10(1): 1949896, 2021.
Article in English | MEDLINE | ID: mdl-34367730

ABSTRACT

Although active immunotherapies are effective strategies to induce activation of CD8+ T cells, advanced stage tumors require further improvements for efficient control. Concerning the burden of cancer-related to Human papillomavirus (HPV), particularly the high incidence and mortality of cervical cancer, our group developed an approach based on a DNA vaccine targeting the HPV-16 E7 oncoprotein (pgDE7h). This immunotherapy is capable of inducing an antitumour CD8+ T cell response but show only partial control of tumors in more advanced growth stages. Here, we combined a chemotherapeutic agent (gemcitabine- Gem) with pgDE7h to overcome immunosuppression and improve antitumour responses in a preclinical mouse tumor model. Our results demonstrated that administration of Gem had synergistic antitumor effects when combined with pgDE7h leading to eradication of both early-stages and established tumors. Overall, the antiproliferative effects of Gem observed in vitro and in vivo provided an optimal window for immunotherapy. In addition, the enhanced antitumour responses induced by the combined therapeutic regimen included enhanced frequencies of antigen-presenting cells (APCs), E7-specific IFN-γ-producing CD8+ T cells, and cytotoxic CD8+ T cells and, concomitantly, less pronounced accumulation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). These findings demonstrated that the combination of Gem and an active immunotherapy strategy show increased effectiveness, leading to a reduced need for multiple drug doses and, therefore, decreased deleterious side effects avoiding resistance and tumor relapses. Altogether, our results provide evidence for a new and feasible chemoimmunotherapeutic strategy that supports future clinical translation.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Vaccines, DNA , Animals , CD8-Positive T-Lymphocytes , Deoxycytidine/analogs & derivatives , Female , Humans , Mice , Papillomaviridae , Papillomavirus Infections/drug therapy , Uterine Cervical Neoplasms/drug therapy , Gemcitabine
18.
PLoS Negl Trop Dis ; 15(7): e0009612, 2021 07.
Article in English | MEDLINE | ID: mdl-34329305

ABSTRACT

This study aims to describe the sociodemographic determinants associated with exposure to Zika Virus (ZIKV) in pregnant women during the 2015-2016 epidemic in Salvador, Brazil. METHODS: We recruited women who gave birth between October 2015 and January 2016 to a cross-sectional study at a referral maternity hospital in Salvador, Brazil. We collected information on their demographic, socioeconomic, and clinical characteristics, and evaluated their ZIKV exposure using a plaque reduction neutralization test. Logistic regression was then used to assess the relationship between these social determinants and ZIKV exposure status. RESULTS: We included 469 pregnant women, of whom 61% had a positive ZIKV result. Multivariate analysis found that lower education (adjusted Prevalence Rate [aPR] 1.21; 95%CI 1.04-1.35) and food insecurity (aPR 1.17; 95%CI 1.01-1.30) were positively associated with ZIKV exposure. Additionally, age was negatively associated with the infection risk (aPR 0.99; 95%CI 0.97-0.998). CONCLUSION: Eve after controlling for age, differences in key social determinants, as education and food security, were associated with the risk of ZIKV infection among pregnant women in Brazil. Our findings elucidate risk factors that can be targeted by future interventions to reduce the impact of ZIKV infection in this vulnerable population.


Subject(s)
Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Socioeconomic Factors , Zika Virus Infection/economics , Zika Virus Infection/epidemiology , Adult , Brazil/epidemiology , Cross-Sectional Studies , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/economics , Risk Factors
19.
PLoS One ; 16(9): e0256444, 2021.
Article in English | MEDLINE | ID: mdl-34525107

ABSTRACT

OBJECTIVE: To describe the neurological and neurodevelopmental outcomes of children with Congenital Zika Syndrome (CZS) associated microcephaly beyond 2 years of age. METHOD: We followed children with CZS-associated microcephaly in an outpatient clinic in Salvador, Brazil. Neurological and neurodevelopmental assessments were performed using the Hammersmith Infant Neurological Examination (HINE) and Bayley Scales of Infant and Toddler Neurodevelopment (Bayley-III) respectively. RESULTS: Of the 42 children included, 19 were male (45.2%); median (interquartile range) age at neurological evaluation was 28 (25-32) months, and 36 (85.7%) had severe microcephaly. HINE and Bayley-III results were completed for 35/42 (83.3%) and 33/42 (78.5%) children respectively. Bayley-III identified a severe developmental delay in 32/33 (97.0%) children while 1/33 (3.0%) had only a mild delay. In the multivariable analysis, we found that Bayley-III and HINE scores were correlated. Better HINE scores were associated with higher Bayley-III cognitive raw scores (ß = 0.29; CI 95% = 0.02-0.57) and motor raw scores (ß = 0.43; CI 95% = 0.04-0.82) after adjusting for head circumference, prematurity, and age at neurodevelopmental evaluation. Furthermore, we found that greater head circumference at follow up was associated with higher cognitive (ß = 1.27; CI 95% = 0.01-2.53) and motor raw scores (ß = 2.03; CI 95% = 0.25-3.81). CONCLUSION: Children with CZS-associated microcephaly demonstrate severe neurodevelopmental delays and slower growth rates than their peers over time. Still, they have remarkably heterogeneous neurodevelopmental profiles according to neurological exam scores which correlate with their long-term outcomes. We found that HINE scores effectively captured the heterogeneity of neurological capabilities among these children and could be predictive of cognitive and motor development progress.


Subject(s)
Developmental Disabilities/diagnosis , Microcephaly/diagnosis , Microcephaly/epidemiology , Zika Virus Infection/diagnosis , Brazil/epidemiology , Cephalometry , Child, Preschool , Developmental Disabilities/physiopathology , Developmental Disabilities/virology , Female , Humans , Infant , Infant, Newborn , Male , Microcephaly/etiology , Microcephaly/virology , Neurologic Examination , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/physiopathology , Pregnancy Complications, Infectious/virology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/virology
20.
Braz J Microbiol ; 51(2): 455-465, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32016818

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) represents one of the most important etiological agents of diarrhea in developing countries and characteristically produces at least one of two enterotoxins: heat-labile toxin (LT) and heat-stable toxin (ST). It has been previously shown that the production and release of LT by human-derived ETEC strains are variable. Although the natural genetic polymorphisms of regulatory sequences of LT-encoding (eltAB) genes may explain the variable production of LT, the knowledge of the transcriptional and posttranscriptional aspects affecting LT expression among ETEC strains is not clear. To further understand the factors affecting LT expression, we evaluated the impact of the natural polymorphism in noncoding regulatory sequences of eltAB among clinically derived ETEC strains. Sequence analyses of seven clinically derived strains and the reference strain H10407 revealed polymorphic sites at both the promoter and upstream regions of the eltAB operon. Operon fusion assays with GFP revealed that specific nucleotide changes in the Pribnow box reduce eltAB transcription. Nonetheless, the total amounts of LT produced by the tested ETEC strains did not strictly correspond to the detected LT-specific mRNA levels. Indeed, the stability of LT varied according to the tested strain, indicating the presence of posttranscriptional mechanisms affecting LT expression. Taken together, our results indicate that the production of LT is a strain-specific process and involves transcriptional and posttranscriptional mechanisms that regulate the final amount of toxin produced and released by specific strains.


Subject(s)
Bacterial Toxins/genetics , Enterotoxigenic Escherichia coli/genetics , Enterotoxins/genetics , Gene Expression Regulation, Bacterial , Transcription, Genetic , Escherichia coli Proteins/genetics , Operon , Polymorphism, Genetic , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL