Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Comput Struct Biotechnol J ; 21: 1272-1282, 2023.
Article in English | MEDLINE | ID: mdl-36814721

ABSTRACT

T cells expressing either alpha-beta or gamma-delta T cell receptors (TCR) are critical sentinels of the adaptive immune system, with receptor diversity being essential for protective immunity against a broad array of pathogens and agents. Programs available to profile TCR clonotypic signatures can be limiting for users with no coding expertise. Current analytical pipelines can be inefficient due to manual processing steps, open to data entry errors and have multiple analytical tools with unique inputs that require coding expertise. Here we present a bespoke webtool designed for users irrespective of coding expertise, coined 'TCR_Explore', enabling analysis either derived via Sanger sequencing or next generation sequencing (NGS) platforms. Further, TCR_Explore incorporates automated quality control steps for Sanger sequencing. The creation of flexible and publication ready figures are enabled for different sequencing platforms following universal conversion to the TCR_Explore file format. TCR_Explore will enhance a user's capacity to undertake in-depth TCR repertoire analysis of both new and pre-existing datasets for identification of T cell clonotypes associated with health and disease. The web application is located at https://tcr-explore.erc.monash.edu for users to interactively explore TCR repertoire datasets.

2.
J Clin Exp Hepatol ; 13(1): 139-148, 2023.
Article in English | MEDLINE | ID: mdl-36647415

ABSTRACT

Strategies to minimize immune-suppressive medications after liver transplantation are limited by allograft rejection. Biopsy of liver is the current standard of care in diagnosing rejection. However, it adds to physical and economic burden to the patient and has diagnostic limitations. In this review, we aim to highlight the different biomarkers to predict and diagnose acute rejection. We also aim to explore recent advances in molecular diagnostics to improve the diagnostic yield of liver biopsies.

3.
Saudi J Biol Sci ; 29(4): 2072-2084, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531253

ABSTRACT

Genitourinary cancers comprise of a heterogenous group of cancers of which renal cell carcinoma, urothelial bladder carcinoma, and prostate adenocarcinoma are the most commonly encountered subtypes. A lot of research is ongoing using various strategies for exploration of novel biomarkers for genitourinary cancers. These biomarkers would not reduce the need for invasive diagnostic techniques but also could be used for early and accurate diagnosis to improve the clinical management required for the disease. Moreover, selecting the appropriate treatment regimen for the responsive patients based on these biomarkers would reduce the treatment toxicity as well as cost. Biomarkers identified using various advanced techniques like next generation sequencing and proteomics, which have been classified as immunological biomarkers, tissue-specific biomarkers and liquid biomarkers. Immunological biomarkers include markers of immunological pathways such as CTLA4, PD-1/PDl-1, tissue biomarkers include tissue specific molecules such as PSA antigen and liquid biomarkers include biomarkers detectable in urine, circulating cells etc. The purpose of this review is to provide a brief introduction to the most prevalent genitourinary malignancies, including bladder, kidney, and prostate cancers along with a major focus on the novel diagnostic biomarkers and the importance of targeting them prior to genitourinary cancers treatment. Understanding these biomarkers and their potential in diagnosis of genitourinary cancer would not help in early and accurate diagnosis as mentioned above but may also lead towards a personalized approach for better diagnosis, prognosis and specified treatment approach for an individual.

4.
Curr Res Microb Sci ; 3: 100137, 2022.
Article in English | MEDLINE | ID: mdl-35909631

ABSTRACT

Increasing incidence of fungal infections of recent times requires immediate intervention. Fungal infections are seldom construed at initial stages that intensify the severity of infections and complicate the treatment procedures. Fungal pathogens employ various mechanisms to evade the host immune system and to progress the severity of infections. For the treatment of diverse superficial and systemic infections, antifungal drugs from the available repertoire are administered. However, well documented evidence of fungal resistance to most of the antifungal drugs hampers disease control and poses challenges in antifungal therapy. Several physiological adaptations and genetic mutations followed by their selection in presence of antifungal agents drive the resistance development in fungi. The availability of limited antifungal arsenal, emergence of resistance and biofilm-conferred resistance drives the need for development of novel drugs and alternate approaches for the better treatment outcome against mycoses. This graphical review explicitly shed light on various fungal infections and causative organisms, pathogenesis, different antifungal drugs and resistance mechanisms including host immune response and evasion strategies. Here, we have highlighted recent developments on novel antifungal agents and other alternate approaches for fighting against fungal infections.

5.
J Transl Autoimmun ; 4: 100087, 2021.
Article in English | MEDLINE | ID: mdl-33768201

ABSTRACT

Recent advances in single-cell sequencing technologies enable the generation of large-scale data sets of paired TCR sequences from patients with autoimmune disease. Methods to validate and characterize patient-derived TCR data are needed, as well as relevant model systems that can support the development of antigen-specific tolerance inducing drugs. We have generated a pipeline to allow streamlined generation of 'artificial' T cells in a robust and reasonably high throughput manner for in vitro and in vivo studies of antigen-specific and patient-derived immune responses. Hereby chimeric (mouse-human) TCR alpha and beta constructs are re-expressed in three different formats for further studies: (i) transiently in HEK cells for peptide-HLA tetramer validation experiments, (ii) stably in the TCR-negative 58 â€‹T cell line for functional readouts such as IL-2 production and NFAT-signaling, and lastly (iii) in human HLA-transgenic mice for studies of autoimmune disease and therapeutic interventions. As a proof of concept, we have used human HLA-DRB1∗04:01 restricted TCR sequences specific for a type I diabetes-associated GAD peptide, and an influenza-derived HA peptide. We show that the same chimeric TCR constructs can be used in each of the described assays facilitating sequential validation and prioritization steps leading to humanized animal models.

6.
J Bone Oncol ; 20: 100271, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31956474

ABSTRACT

Survival rate for Chondrosarcoma (CHS) is at a standstill, more effective treatments are urgently needed. Consequently, a better understanding of CHS biology and its immune environment is crucial to identify new prognostic factors and therapeutic targets. Here, we exhaustively describe the immune landscape of conventional and dedifferentiated CHS. Using IHC and molecular analyses (RT-qPCR), we mapped the expression of immune cell markers (CD3, CD8, CD68, CD163) and immune checkpoints (ICPs) from a cohort of 27 conventional and 49 dedifferentiated CHS. The impact of the density of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs) and immune checkpoints (ICPs) on clinical outcome were analyzed. We reveal that TAMs are the main immune population in CHS. Focusing on dedifferentiated CHS, we found that immune infiltrate composition is correlated with patient outcome, a high CD68+/CD8+ ratio being an independent poor prognostic factor (p < 0.01), and high CD68+ levels being associated with the presence of metastases at diagnosis (p < 0.05). Among the ICPs evaluated, CSF1R, B7H3, SIRPA, TIM3 and LAG3 were expressed at the mRNA level in both CHS subtypes. Furthermore, PDL1 expression was confirmed by IHC exclusively in dedifferentiated CHS (42.6% of the patients) and CSF1R was expressed by TAMs in 89.7% of dedifferentiated CHS (vs 62.9% in conventional). Our results show that the immune infiltrate of CHS is mainly composed of immunosuppressive actors favoring tumor progression. Our results indicate that dedifferentiated CHS could be eligible for anti-PDL1 therapy and more importantly immunomodulation through CSF1R + macrophages could be a promising therapeutic approach for both CHS subtypes.

7.
Mol Metab ; 5(9): 771-81, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27617200

ABSTRACT

BACKGROUND: Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, inducing inflammation. The mechanisms regulating such a process are based on the crosstalk between the gut microbiota and the host immune system. The hologenome theory of evolution supports this concept and implies that therapeutic strategies aiming to control glycemia should take into account both the gut microbiota and the host immune system. SCOPE OF REVIEW: This review discusses the latest evidence regarding the bidirectional impact of the gut microbiota on host immune system crosstalk for the control of metabolic disease, hyperglycemia, and obesity. To avoid redundancies with the literature, we will focus our attention on the intestinal immune system, identifying evidence for the generation of novel therapeutic strategies, which could be based on the control of the translocation of gut bacteria to tissues. Such novel strategies should hamper the role played by gut microbiota dysbiosis on the development of metabolic inflammation. MAJOR CONCLUSIONS: Recent evidence in rodents allows us to conclude that an impaired intestinal immune system characterizes and could be causal in the development of metabolic disease. The fine understanding of the molecular mechanisms should allow for the development of a first line of treatment for metabolic disease and its co-morbidities. This article is part of a special issue on microbiota.

8.
Mol Metab ; 5(6): 392-403, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27257599

ABSTRACT

OBJECTIVE: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. METHODS: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. RESULTS: Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. CONCLUSIONS: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

9.
EBioMedicine ; 5: 46-58, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27077111

ABSTRACT

Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8(+) and CD4(+) T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8(+) T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4(+) T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8(+) or CD4(+) T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8(+) T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections.


Subject(s)
Antigen Presentation/immunology , CD40 Ligand/immunology , Dendritic Cells/immunology , Immunotherapy, Active , Lymphocyte Activation/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Humans , Lectins/immunology , Lectins, C-Type/immunology , Mice , Mice, Transgenic , Recombinant Fusion Proteins/immunology , Scavenger Receptors, Class E/immunology
10.
Hum Vaccin Immunother ; 11(8): 1936-44, 2015.
Article in English | MEDLINE | ID: mdl-26090875

ABSTRACT

We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles.


Subject(s)
Biolistics/methods , Drug Delivery Systems/methods , Micro-Electrical-Mechanical Systems/methods , Pharmaceutical Preparations/administration & dosage , Powders/administration & dosage , Vaccines, DNA/administration & dosage , Animals , Humans , Mice, Inbred BALB C , Swine
11.
Hum Vaccin Immunother ; 11(3): 553-63, 2015.
Article in English | MEDLINE | ID: mdl-25714138

ABSTRACT

Because of the age-related immune system decline, 2 potentiated influenza vaccines were specifically licensed for the elderly: Fluad(®), an MF59-adjuvanted vaccine administered intramuscularly (IM-MF59), and Intanza 15 mcg(®), a non adjuvanted vaccine administered intradermally (ID). The objective of this paper was to conduct a systematic review of studies that evaluated antibody responses in the elderly following immunization with IM-MF59 or ID vaccines. The two potentiated vaccines induced immune responses satisfying, in most instances, the European Medicine Agency immunogenicity criteria, both against vaccine antigens and heterovariant drifted strains. Considering pooled data reported in the articles analyzed and papers directly comparing the 2 vaccines, the antibody responses elicited by IM-MF59 and ID were found to be generally comparable. The use of IM-MF59 and ID vaccines can be proposed as an appropriate strategy for elderly seasonal influenza vaccination although further studies are required for a more complete characterization of the 2 vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Polysorbates/administration & dosage , Squalene/administration & dosage , Aged , Aged, 80 and over , Humans , Injections, Intradermal , Injections, Intramuscular , Middle Aged
12.
Oncoimmunology ; 4(7): e989137, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26140252

ABSTRACT

Epstein-Barr virus-induced gene 3 (EBI3) encoded protein can form heterodimers with IL-27P28, and IL-12P35 to form IL-27, and IL-35. However, IL-27 stimulates, whereas IL-35 inhibits antitumor T-cell responses. IL-27 also limits the Foxp3+ regulatory T cell (Treg) population, whereas IL-35 has been shown to expand Tregs and foster Treg suppressive functions. It remains unclear which group of forces are dominant during antitumor T-cell responses. In this study, we evaluated the tumor growth and antitumor T-cell responses in EBI3-deficient mice that lack both IL-27 and IL-35. We found that injecting B16 melanoma cells into EBI3-deficient C57BL/6 mice, or J558 plasmacytoma cells into EBI3-deficient BALB/c mice resulted in significantly increased tumor growth relative to those implanted in wild-type control mice. Tumors from EBI3-deficient mice contained significantly decreased proportions of CD8+ T cells and increased proportions of CD4+FoxP3+ Treg cells as compared to those from EBI3-intact mice. Tumor-infiltrating T cells from EBI3-deficient mice were impaired in their capacity to produce IFNγ. Phenotypically, Tregs from EBI3-deficient mice were highly suppressive and produced IL-10 in the tumor microenvironment. Depletion of Tregs or inactivation of the IL-10 pathway significantly abrogated tumor growth enhancement in Ebi3-/- mice. Finally, we showed that Ebi3-/- mice administered a melanoma vaccine failed to mount a CD8+ T-cell response and the vaccine failed to confer tumor rejection in EBI3-deficient mice. Taken together, these results suggest that Ebi3-/- mice show a phenotype of IL-27-deficiency rather than IL-35-deficiency during anti-tumor T-cell responses. Thus, our results suggest that endogenous IL-27 is critical for both spontaneous and vaccine-induced antitumor T-cell responses.

13.
EBioMedicine ; 2(11): 1686-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26870795

ABSTRACT

Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1ß and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1ß and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.


•Increased bacterial susceptibility during COPD is related to a defect in Th17 cytokines.•Cigarette smoke alters the production of immunoregulatory cytokines by lung APC.•Immunotherapy restoring the defective IL-22 response could represent an ideal therapy to prevent exacerbation in COPD patients.The progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations mostly due to bacterial infections. It is not well understood why COPD patients are more susceptible to infections. In our experimental model of COPD as well as in COPD patients, we identified a defect in the IL-17/IL-22 response to S. pneumoniae, leading to the bacterial outgrowth. This was mainly due to the alteration of lung antigen-presenting cells by cigarette smoke. Restoring the defective IL-22 response represents a promising therapeutic approach for the treatment and/or the prevention of COPD exacerbations.


Subject(s)
Interleukins/deficiency , Pneumococcal Infections/complications , Pneumococcal Infections/genetics , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/genetics , Adult , Aged , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Cytokines/biosynthesis , Disease Models, Animal , Disease Progression , Female , Humans , Interleukin-17/biosynthesis , Lung/immunology , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice , Middle Aged , Pneumococcal Infections/metabolism , Pneumococcal Infections/microbiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Th17 Cells/immunology , Th17 Cells/metabolism , Interleukin-22
14.
Oncoimmunology ; 4(6): e1008334, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26155412

ABSTRACT

The progression of genital human papillomavirus (HPV) infections into preneoplastic lesions suggests that infected/malignant cells are not adequately recognized by the immune system. In this study, we demonstrated that cervical/vulvar cancer cells secrete factor(s) that affect both the maturation and function of dendritic cells (DC) leading to a tolerogenic profile. Indeed, DC cocultured with cancer cell lines display both a partially mature phenotype after lipopolysaccharide (LPS) maturation and an altered secretory profile (IL-10high and IL-12p70low). In addition, tumor-converted DC acquire the ability to alter T-cell proliferation and to induce FoxP3+ suppressive T cells from naive CD4+ T cells. Among the immunosuppressive factors implicated in DC alterations in genital (pre)neoplastic microenvironment, we identified receptor activator of nuclear factor kappa-B ligand (RANKL), a TNF family member, as a potential candidate. For the first time, we showed that RANKL expression strongly increases during cervical progression. We also confirmed that RANKL is directly secreted by cancer cells and this expression is not related to HPV viral oncoprotein induction. Interestingly, the addition of osteoprotegerin (OPG) in coculture experiments reduces significantly the inhibition of DC maturation, the release of a tolerogenic cytokine profile (IL-12low IL-10high) and the induction of regulatory T (Treg) cells. Our findings suggest that the use of inhibitory molecules directed against RANKL in cervical/vulvar (pre)neoplastic lesions might prevent alterations of DC functionality and represent an attractive strategy to overcome immune tolerance in such cancers.

15.
MAbs ; 7(1): 129-37, 2015.
Article in English | MEDLINE | ID: mdl-25523454

ABSTRACT

Immunization of mice or rats with a "non-self" protein is a commonly used method to obtain monoclonal antibodies, and relies on the immune system's ability to recognize the immunogen as foreign. Immunization of an antigen with 100% identity to the endogenous protein, however, will not elicit a robust immune response. To develop antibodies to mouse proteins, we focused on the potential for breaking such immune tolerance by genetically fusing two independent T-cell epitope-containing sequences (from tetanus toxin (TT) and diphtheria toxin fragment A (DTA)) to a mouse protein, mouse ST2 (mST2). Wild-type CD1 mice were immunized with three mST2 tagged proteins (Fc, TT and DTA) and the specific serum response was determined. Only in mice immunized with the T-cell epitope-containing antigens were specific mST2 serum responses detected; hybridomas generated from these mice secreted highly sequence-diverse IgGs that were capable of binding mST2 and inhibiting the interaction of mST2 with its ligand, mouse interleukin (IL)-33 (mIL-33). Of the hundreds of antibodies profiled, we identified five potent antibodies that were able to inhibit IL-33 induced IL-6 release in a mast cell assay; notably one such antibody was sufficiently potent to suppress IL-5 release and eosinophilia infiltration in an Alternaria alternata challenge mouse model of asthma. This study demonstrated, for the first time, that T-cell epitope-containing tags have the ability to break tolerance in wild-type mice to 100% conserved proteins, and it provides a compelling argument for the broader use of this approach to generate antibodies against any mouse protein or conserved ortholog.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibody Specificity , Epitopes, T-Lymphocyte/immunology , Receptors, Interleukin/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Cell Line, Transformed , Diphtheria Toxin/chemistry , Diphtheria Toxin/immunology , Epitopes, T-Lymphocyte/chemistry , Female , Humans , Interleukin-1 Receptor-Like 1 Protein , Mice , Mice, Inbred BALB C , Rats , Receptors, Interleukin/chemistry , Tetanus Toxin/chemistry , Tetanus Toxin/immunology
16.
Oncoimmunology ; 4(5): e1003016, 2015 May.
Article in English | MEDLINE | ID: mdl-26155398

ABSTRACT

T cells are crucial players in the protection against cancer, and can be used in adoptive cell therapy to prevent or treat relapse. However, their state of differentiation determines their effectiveness, with early memory cells being the most favorable. Here, we discuss restraining of differentiation to engineer the ultimate tumor-reactive T cell.

17.
Hum Vaccin Immunother ; 10(11): 3251-60, 2014.
Article in English | MEDLINE | ID: mdl-25483674

ABSTRACT

Adjuvants are a critical but largely overlooked and poorly understood component included in vaccine formulations to stimulate and modulate the desired immune responses to an antigen. However, unlike in the protective infectious disease vaccines, adjuvants for cancer vaccines also need to overcome the effect of tumor-induced suppressive immune populations circulating in tumor-bearing individuals. Myeloid-derived suppressor cells (MDSC) are considered to be one of the key immunosuppressive populations that inhibit tumor-specific T cell responses in cancer patients. This review focuses on the different signals for the activation of the immune system induced by adjuvants, and the close relationship to the mechanisms of recruitment and activation of MDSC. This work explores the possibility that a cancer vaccine adjuvant may either strengthen or weaken the effect of tumor-induced MDSC, and the crucial need to address this in present and future cancer vaccines.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Cancer Vaccines/immunology , Myeloid Cells/immunology , Neoplasms/immunology , Cell Differentiation/immunology , Cytokines/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Humans , Intercellular Signaling Peptides and Proteins/immunology , Lymphocyte Activation/immunology , Macrophages/cytology , Macrophages/immunology , Neoplasms/prevention & control , Neoplasms/therapy , T-Lymphocytes/immunology , Vaccination
18.
Hum Vaccin Immunother ; 10(11): 3354-68, 2014.
Article in English | MEDLINE | ID: mdl-25483688

ABSTRACT

Pancreatic cancer (PC) is the 5th leading cause of cancer related death in the developed world with more than 260,000 deaths annually worldwide and with a dismal 5-year survival. Surgery is the only potential hope of cure for PC, but, unfortunately, only 20% PC patients is resectable at the time of diagnosis. Therapeutic research efforts have mainly focused on improvements in radio/ chemo treatments and to date, there are only a few chemotherapeutic agents that have shown to be effective against PC, including gemcitabine with or without abraxane as well as a combination of 5-FU, leucovorin, oxaliplatin and irinotecan (the so-called FOLFIRINOX regimen). The survival of patients treated with these regimens is marginal and hence we are in urgent need of novel therapeutic approaches to treat pancreatic cancer. The success of immunotherapeutic strategies in other cancers and various evidences that pancreatic adenocarcinoma elicits antitumor immune responses, suggest that immunotherapies can be a promising alternative treatment modality for this deadly disease. PC immunotherapy treatments include passive immunotherapeutic approaches, such as the use of effector cells generated in vitro, and active immunotherapeutic strategies, which goal is to stimulate an antitumor response in vivo, by means of vaccination. In this review, we describe the immune suppressive mechanisms of pancreatic cancer and discuss recent preclinical and clinical efforts toward PC immunotherapy, including passive approaches, such as the use of antibodies and active strategies (vaccination), with a special mention of most recent treatment with CRS-207 and GVAX.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Cancer Vaccines/therapeutic use , Immunotherapy/methods , Pancreatic Neoplasms/therapy , Antibodies, Monoclonal/immunology , Antineoplastic Agents/therapeutic use , Cancer Vaccines/immunology , Dendritic Cells/immunology , Disease Progression , Humans , Immune Tolerance/immunology , Pancreatic Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Escape/immunology
19.
Oncoimmunology ; 3(9): e955343, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25941612

ABSTRACT

CD1d-restricted invariant natural killer T cells (iNKT) constitute an important immunoregulatory T-cell subset involved in the induction of antitumor immune responses. Here, we provide a view on the recent observation that Vγ9Vδ2-T cells, through trogocytosis of CD1d-containing membrane fragments, have the capacity to act as antigen presenting cells for iNKT.

20.
Hum Vaccin Immunother ; 10(9): 2733-40, 2014.
Article in English | MEDLINE | ID: mdl-25483491

ABSTRACT

Signal peptide (SP) domains have a common motif but also sequence specific features. This knowledge was mainly ignored by immunologists who considered SP as generic, short-lived, targeting sequences. Consequently, while SP-derived MHC class I, class II and HLA-E epitopes have been isolated, their use as antigen-specific vaccine candidates (VCs) was mostly neglected. Recently we demonstrated the rational of selecting entire SP domains as multi-epitope long peptide VCs based on their high T and B-cell epitope densities. This review summarizes preclinical and clinical results demonstrating the various advantages of human SP domain VCs derived from both bacterial and tumor antigens. Such vaccine design provides for a straightforward, yet unique immunotherapeutic means of generating robust, non-toxic, diversified, combined antigen-specific CD4+/CD8+ T/B-cell immunity, irrespective of patient HLA repertoire also in disease associated transporter-associated with antigen processing (TAP) deficiencies. Subsequent clinical trials will further assess the full potential of this approach.


Subject(s)
Bacterial Vaccines/immunology , Cancer Vaccines/immunology , Protein Sorting Signals , Vaccination/methods , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Clinical Trials as Topic , Drug Evaluation, Preclinical , Epitopes/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL