Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.536
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38843834

ABSTRACT

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Subject(s)
Antimicrobial Peptides , Machine Learning , Microbiota , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Humans , Animals , Anti-Bacterial Agents/pharmacology , Mice , Metagenome , Bacteria/drug effects , Bacteria/genetics , Gastrointestinal Microbiome/drug effects
2.
Cell ; 187(15): 4095-4112.e21, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38885650

ABSTRACT

The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.


Subject(s)
Metabolomics , Polyamines , Humans , Animals , Polyamines/metabolism , Mice , Bacteremia/microbiology , Bacteremia/metabolism , Bacteremia/drug therapy , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/metabolism , Female
3.
Cell ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39332413

ABSTRACT

Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.

4.
Cell ; 187(1): 17-43, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181740

ABSTRACT

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Subject(s)
Microbiota , Social Factors , Symbiosis , Animals , Humans , Noncommunicable Diseases , Virulence
5.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36708705

ABSTRACT

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Subject(s)
Gene Expression Profiling , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA , RNA-Seq , Bacteria/genetics , Single-Cell Analysis
6.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37865090

ABSTRACT

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Biofilms , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Tuberculosis/pathology , Virulence , Biomechanical Phenomena
7.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37611581

ABSTRACT

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Subject(s)
Anti-Bacterial Agents , Bacteria , Soil Microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Biological Assay , Diphosphates
8.
Annu Rev Biochem ; 91: 705-729, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35320686

ABSTRACT

Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.


Subject(s)
Bacteria/chemistry , Phospholipid Transfer Proteins/chemistry , Bacteria/classification , Bacteria/cytology , Bacteria/metabolism , Lipids , Peptidoglycan , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism
9.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34619078

ABSTRACT

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Lyme Disease/drug therapy , Animals , Borrelia burgdorferi/drug effects , Calibration , Cinnamates/chemistry , Cinnamates/pharmacology , Cinnamates/therapeutic use , Drug Evaluation, Preclinical , Feces/microbiology , Female , HEK293 Cells , Hep G2 Cells , Humans , Hygromycin B/analogs & derivatives , Hygromycin B/chemistry , Hygromycin B/pharmacology , Hygromycin B/therapeutic use , Lyme Disease/microbiology , Mice , Microbial Sensitivity Tests , Microbiota/drug effects
10.
Cell ; 180(5): 1002-1017.e31, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109417

ABSTRACT

Genome-wide CRISPR screens enable systematic interrogation of gene function. However, guide RNA libraries are costly to synthesize, and their limited diversity compromises the sensitivity of CRISPR screens. Using the Streptococcus pyogenes CRISPR-Cas adaptation machinery, we developed CRISPR adaptation-mediated library manufacturing (CALM), which turns bacterial cells into "factories" for generating hundreds of thousands of crRNAs covering 95% of all targetable genomic sites. With an average gene targeted by more than 100 distinct crRNAs, these highly comprehensive CRISPRi libraries produced varying degrees of transcriptional repression critical for uncovering novel antibiotic resistance determinants. Furthermore, by iterating CRISPR adaptation, we rapidly generated dual-crRNA libraries representing more than 100,000 dual-gene perturbations. The polarized nature of spacer adaptation revealed the historical contingency in the stepwise acquisition of genetic perturbations leading to increasing antibiotic resistance. CALM circumvents the expense, labor, and time required for synthesis and cloning of gRNAs, allowing generation of CRISPRi libraries in wild-type bacteria refractory to routine genetic manipulation.


Subject(s)
CRISPR-Cas Systems/genetics , Genome, Bacterial/genetics , Genomic Library , Staphylococcus aureus/genetics , Escherichia coli/genetics , Humans , RNA, Bacterial/genetics , RNA, Guide, Kinetoplastida/genetics , Streptococcus pyogenes/genetics
11.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32084340

ABSTRACT

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Machine Learning , Thiadiazoles/pharmacology , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cheminformatics/methods , Clostridioides difficile/drug effects , Databases, Chemical , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiadiazoles/chemistry
12.
Annu Rev Biochem ; 87: 451-478, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29570352

ABSTRACT

Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ribosomes/drug effects , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Binding Sites , Drug Design , Drug Resistance, Microbial , Humans , Models, Biological , Models, Molecular , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , Ribosomes/chemistry , Ribosomes/metabolism , Structure-Activity Relationship
13.
Cell ; 172(3): 618-628.e13, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29307492

ABSTRACT

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Peptide Library , Animals , Anti-Bacterial Agents/chemistry , Escherichia coli , Mice
14.
Cell ; 172(5): 1038-1049.e10, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29456081

ABSTRACT

ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.


Subject(s)
Anti-Bacterial Agents/pharmacology , L Forms/drug effects , Muramidase/metabolism , beta-Lactams/pharmacology , Animals , Bacillus subtilis/drug effects , Bacteriolysis/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Hydrolases/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Microbial Viability/drug effects , Osmoregulation/drug effects , Penicillin G/pharmacology , Penicillin-Binding Proteins , Peptidoglycan/metabolism , Prophages/drug effects , RAW 264.7 Cells
15.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307490

ABSTRACT

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Subject(s)
Cystic Fibrosis/microbiology , Drug Resistance, Bacterial , Evolution, Molecular , Phenotype , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Cystic Fibrosis/complications , DNA-Binding Proteins/genetics , Humans , Male , Middle Aged , Mutation , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Selection, Genetic , Transcription Factors/genetics
16.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551265

ABSTRACT

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Subject(s)
DNA, Bacterial/metabolism , Transposases/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA Cleavage , DNA Transposable Elements/genetics , DNA, Bacterial/chemistry , Drug Resistance, Bacterial , Enterococcus faecalis/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Transposases/antagonists & inhibitors , Transposases/chemistry , Transposases/genetics
17.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29937224

ABSTRACT

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Subject(s)
Biomimetics/methods , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/prevention & control , Alkaline Phosphatase/blood , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Disk Diffusion Antimicrobial Tests , Female , HEK293 Cells , Humans , Lipopolysaccharide Receptors/genetics , Lysostaphin/metabolism , Lysostaphin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred C57BL , Plasmids/genetics , Plasmids/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 6/genetics , Transcription Factor AP-1/metabolism
18.
Annu Rev Biochem ; 86: 567-583, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28654325

ABSTRACT

Multidrug resistance is a global threat as the clinically available potent antibiotic drugs are becoming exceedingly scarce. For example, increasing drug resistance among gram-positive bacteria is responsible for approximately one-third of nosocomial infections. As ribosomes are a major target for these drugs, they may serve as suitable objects for novel development of next-generation antibiotics. Three-dimensional structures of ribosomal particles from Staphylococcus aureus obtained by X-ray crystallography have shed light on fine details of drug binding sites and have revealed unique structural motifs specific for this pathogenic strain, which may be used for the design of novel degradable pathogen-specific, and hence, environmentally friendly drugs.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/chemistry , Drug Design , Ribosomes/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cross Infection/drug therapy , Cross Infection/microbiology , Crystallography, X-Ray , Deinococcus/drug effects , Deinococcus/genetics , Deinococcus/metabolism , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Models, Molecular , Ribosomes/metabolism , Ribosomes/ultrastructure , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Thermus thermophilus/drug effects , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
19.
Cell ; 169(5): 849-861.e13, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28502769

ABSTRACT

We examined the evolutionary history of leading multidrug resistant hospital pathogens, the enterococci, to their origin hundreds of millions of years ago. Our goal was to understand why, among the vast diversity of gut flora, enterococci are so well adapted to the modern hospital environment. Molecular clock estimation, together with analysis of their environmental distribution, phenotypic diversity, and concordance with host fossil records, place the origins of the enterococci around the time of animal terrestrialization, 425-500 mya. Speciation appears to parallel the diversification of hosts, including the rapid emergence of new enterococcal species following the End Permian Extinction. Major drivers of speciation include changing carbohydrate availability in the host gut. Life on land would have selected for the precise traits that now allow pathogenic enterococci to survive desiccation, starvation, and disinfection in the modern hospital, foreordaining their emergence as leading hospital pathogens.


Subject(s)
Biological Evolution , Enterococcus/genetics , Animals , Communicable Diseases, Emerging/microbiology , Cross Infection/microbiology , Drug Resistance, Bacterial , Enterococcus/classification , Enterococcus/cytology , Enterococcus/drug effects , Genetic Speciation , Host-Pathogen Interactions , Larva/microbiology , Moths/growth & development , Moths/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
20.
Cell ; 169(7): 1240-1248.e23, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28622509

ABSTRACT

Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, inhibits bacterial growth in culture, and clears infection in a mouse model of Streptococcus pyogenes peritonitis. PUM inhibits RNAP through a binding site on RNAP (the NTP addition site) and mechanism (competition with UTP for occupancy of the NTP addition site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. PUM is a highly promising lead for antibacterial therapy.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Streptomyces/chemistry , Animals , Anti-Bacterial Agents/chemistry , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , DNA-Directed RNA Polymerases/chemistry , Drug Resistance, Bacterial , Female , HeLa Cells , Humans , Mice , Mice, Inbred ICR , Soil Microbiology , Streptococcal Infections/drug therapy , Streptococcus pyogenes/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL