Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Prep Biochem Biotechnol ; 51(1): 28-34, 2021.
Article in English | MEDLINE | ID: mdl-32633612

ABSTRACT

Organic solvent-tolerant proteases have many applications in the synthesis of peptides. In this study, we have developed a low-cost and convenient method to produce highly concentrated organic solvent-tolerant protease. Organic solvent tolerant protease (OSP) gene from Bacillus sphaericus DS11 was cloned and expressed in Bacillus subtilis WB800. The optimum pH of the recombinant protease was 9.0. The optimum temperature of the recombinant protease was 40 °C. The recombinant protease was purified by ethanol with the yield of (87.33%). The yield of OSP enriched by ethanol was higher than that of by Ni-chelating affinity chromatography, which indicated that precipitation of the recombinant OSP with ethanol is a relatively low-cost and fast method for organic solvent -tolerant protease preparation. These results showed that this enzyme could be very useful in different industrial applications.


Subject(s)
Bacillaceae/enzymology , Bacillaceae/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Peptide Hydrolases/biosynthesis , Peptide Hydrolases/chemistry , Solvents/chemistry , Bacterial Proteins/genetics , Chemical Precipitation , Detergents/chemistry , Enzyme Stability , Ethanol/chemistry , Genes, Bacterial , Hydrogen-Ion Concentration , Peptide Hydrolases/genetics , Recombinant Proteins/isolation & purification , Temperature
2.
Malar J ; 18(1): 55, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30808348

ABSTRACT

BACKGROUND: Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages. METHODS: The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively. RESULTS: BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively). CONCLUSION: These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries.


Subject(s)
Anopheles/physiology , Bacillus/pathogenicity , Bacillus/radiation effects , Insecticides/pharmacology , Mosquito Control/methods , Sunlight , Animals , Anopheles/microbiology , Biological Assay , Female , Larva/microbiology , Larva/physiology
3.
Med Vet Entomol ; 33(2): 220-227, 2019 06.
Article in English | MEDLINE | ID: mdl-30628101

ABSTRACT

The microbial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (Bacillales: Bacillaceae) are well known for their efficacy and safety in mosquito control. In order to assess their potential value in future mosquito control strategies in western Kenya, the current study tested the susceptibility of five populations of Anopheles gambiae complex mosquitoes (Diptera: Culicidae), collected from five diverse ecological sites in this area, to Bti and Bs under laboratory conditions. In each population, bioassays were conducted with eight concentrations of larvicide (Bti/Bs) in four replicates and were repeated on three separate days. Larval mortality was recorded at 24 h or 48 h after the application of larvicide and subjected to probit analysis. A total of 2400 An. gambiae complex larvae from each population were tested for their susceptibility to Bti and Bs. The mean (± standard error of the mean, SEM) lethal concentration values of Bti required to achieve 50% and 95% larval mortality (LC50 and LC95 ) across the five populations were 0.062 (± 0.005) mg/L and 0.797 (± 0.087) mg/L, respectively. Corresponding mean (± SEM) values for Bs were 0.058 (± 0.005) mg/L and 0.451 (± 0.053) mg/L, respectively. Statistical analysis indicated that the five populations of An. gambiae complex mosquitoes tested were fully susceptible to Bti and Bs, and there was no significant variation in susceptibility among the tested populations.


Subject(s)
Anopheles , Bacillaceae/chemistry , Bacillus thuringiensis/chemistry , Insecticides , Mosquito Control , Pest Control, Biological , Animals , Anopheles/growth & development , Kenya , Larva/growth & development
4.
Parasitol Res ; 116(3): 859-864, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012029

ABSTRACT

Mosquitoes are important vectors of many infectious diseases. Bacillus sphaericus (Bs) is an ideal larvicide and has attracted more and more attention, recently. However, the fundamental research of its application is very limited, especially on the subsequent impact of Bs exposure on mosquito's fecundity and resistance emergence. Through bioassay, LC50 and LC95 of Bs in killing Anopheles dirus larvae were determined as 9.793 ± 1.878 IU/L and 62.4 ± 6.438 IU/L at 48 h posttreatment, 7.128 ± 0.913 IU/L and 34.385 ± 12.547 IU/L at 72 h post treatment, respectively. After being treated with a sub-lethal dose of Bs, gravidity, oviposition, hatch, pupation, and eclosion of the surviving mosquitoes were counted and analyzed to elucidate the subsequent effects of Bs exposure on the reproductive capacity of A. dirus. The result interestingly showed that the exposure of Bs significantly reduced the oviposition ability of the surviving A. dirus, without effect on egg formation/gravidity, hatch, pupation, and eclosion. The surviving mosquitoes were also maintained routinely for generations to test the sustained effect of Bs exposure on the fecundity of the offsprings. After conventional breeding for generations, the capacity of egg laying totally recovered. To explore the rules of resistance development, bioassays were performed after treatment twice with a sub-lethal dose of Bs on two continuous generations of A. dirus larvae. The killing efficacies between the Bs treated group and control group were compared. The results showed that LC50 and LC95 increased by 4.35- and 7.37-folds after treatment with the sub-lethal dose of Bs on two consecutive generations, respectively. The results indicated that A. dirus was sensitive to Bs, which could reduce oviposition of the surviving A. dirus. The subsequent effect might help to further decrease the mosquito population. However, a sub-lethal dose of Bs exposure could easily cause resistance development. Our study provides a dose standard and reference for the rational use of Bs, which will be helpful for mosquito control.


Subject(s)
Anopheles/microbiology , Anopheles/physiology , Bacillus/physiology , Mosquito Control/methods , Pest Control, Biological/methods , Animals , Anopheles/growth & development , Female , Fertility , Larva/growth & development , Larva/microbiology , Male , Oviposition
5.
Ecotoxicol Environ Saf ; 139: 335-343, 2017 May.
Article in English | MEDLINE | ID: mdl-28187397

ABSTRACT

Some pesticides are applied directly to aquatic systems to reduce numbers of mosquito larvae (larvicides) and thereby reduce transmission of pathogens that mosquitoes vector to humans and wildlife. Sustained, environmentally-safe control of larval mosquitoes is particularly needed for highly productive waters (e.g., catchment basins, water treatment facilities, septic systems), but also for other habitats to maintain control and reduce inspection costs. Common biorational pesticides include the insect juvenile hormone mimic methoprene and pesticides derived from the bacteria Bacillus thuringiensis israelensis, Lysinibacillus sphaericus and Saccharopolyspora spinosa (spinosad). Health agencies, the public and environmental groups have especially debated the use of methoprene because some studies have shown toxic effects on non-target organisms. However, many studies have demonstrated its apparent environmental safety. This review critically evaluates studies pertinent to the environmental safety of using methoprene to control mosquito larvae, and provides concise assessments of the bacterial larvicides that provide sustained control of mosquitoes. The review first outlines the ecological and health effects of mosquitoes, and distinguishes between laboratory toxicity and environmental effects. The article then interprets non-target toxicity findings in light of measured environmental concentrations of methoprene (as used in mosquito control) and field studies of its non-target effects. The final section evaluates information on newer formulations of bacterially-derived pesticides for sustained mosquito control. Results show that realized environmental concentrations of methoprene were usually 2-5µg/kg (range 2-45µg/kg) and that its motility is limited. These levels were not toxic to the vast majority of vertebrates and invertebrates tested in laboratories, except for a few species of zooplankton, larval stages of some other crustaceans, and small Diptera. Studies in natural habitats have not documented population reductions except in small Diptera. Bacterial larvicides showed good results for sustained control with similarly limited environmental effects, except for spinosad, which had broader effects on insects in mesocosms and temporary pools. These findings should be useful to a variety of stakeholders in informing decisions on larvicide use to protect public and environmental health in a 'One Health' framework.


Subject(s)
Bacillaceae , Bacillus thuringiensis , Insecticides/toxicity , Larva/drug effects , Macrolides/toxicity , Methoprene/toxicity , Mosquito Control , Animals , Culicidae/drug effects , Diptera/drug effects , Drug Combinations , Environmental Health , Insecticides/analysis , Methoprene/analysis , Water Pollutants/toxicity
6.
Malar J ; 15(1): 577, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27903292

ABSTRACT

BACKGROUND: Outdoor malaria transmission is becoming an increasingly important problem in malaria control in Africa. Larval control is a promising intervention as it can target both indoor and outdoor biting mosquitoes. However, the currently available biolarvicide formulations have a short effective duration, and consequently larval control incurs a high operational expense due to the requirement for frequent re-treatment of larval habitats. Formulations of biolarvicides with long-lasting effects is highly desired. A recently developed FourStar® slow-release briquet formulation of Bacillus thuringiensis israelensis and Bacillus sphaericus was evaluated to test its efficacy on malaria vectors. METHODS: The study evaluated FourStar™ briquets 180-days formulation under semi-natural and natural conditions to test their efficacy in reducing the mosquito population in western Kenya. The semi-natural habitats used the formulation dissolved in rainwater with appropriate concentrations, and second-instar larvae of Anopheles gambiae were introduced and the number of surviving larvae and pupae produced was recorded daily as the outcome. The briquets formulation was then tested in natural habitats for efficacy on pupal productivity reduction in highland and lowland sites in western Kenya. The formulation was finally tested for efficacy in reducing adult mosquito populations in randomized clusters in western Kenya highland. RESULTS: In semi-natural conditions, the FourStar™ briquets 180-days formulation completely inhibited mosquito pupal production in the first 3 months, and then reduced pupal productivity by 87-98% (P < 0.001) 4-6 months after application. In natural habitats, during the first 2 months no pupae were detected from any of the treated habitats in highland sites, and Anopheles spp. pupal density was reduced by 60-90% in the next 3-5 months (P < 0.001). In the lowland site, pupal productivity reduction was 100% in the first 3 months, and 75-90% in the next 4-5 months (P < 0.001). The randomized cluster trial found that the application of the briquets formulation reduced mean densities of indoor-biting mosquitoes by 76-82% (P < 0.001) and by 67-75% (P < 0.001) for outdoor-biting mosquitoes. CONCLUSION: This study demonstrated that long-lasting biological larviciding was effective in reducing pupal productivity of larval habitats, and reducing indoor and outdoor resting mosquitoes. The study suggests that long-lasting microbial larviciding may be a promising complementary malaria vector control tool and warrants further large-scale evaluation.


Subject(s)
Anopheles/microbiology , Anopheles/physiology , Bacillus/growth & development , Bacillus/metabolism , Bacterial Toxins/metabolism , Mosquito Control/methods , Pest Control, Biological/methods , Animals , Female , Kenya , Larva/microbiology , Larva/physiology , Survival Analysis
7.
Prep Biochem Biotechnol ; 46(3): 222-8, 2016.
Article in English | MEDLINE | ID: mdl-26011177

ABSTRACT

Recent advances in purification technologies for therapeutic molecules have stirred the research consortium. Mixed mode chromatography, having multiple interactions with the solute molecule, has drawn significant attention due to its overall advantage over traditional ion-exchange and reverse-phase chromatography. Capto adhere, a mixed mode chromatography resin with strong anion-exchange and reverse-phase interaction with solutes, was explored for purification of fibrinolytic enzyme from Bacillus sphaericus MTCC 3672. Static and dynamic resin binding study revealed that 30°C temperature, pH 8, and 0.5 mL/min flow rate were optimum for maximum binding of fibrinolytic enzyme. Maximum static dynamic binding and breakthrough capacities for Capto adhere were 249 and 196 U/mL of resin, respectively. Final purification with Sephadex G 100 gel chromatography resulted in 38-fold purity of fibrinolytic enzyme with 39% enzyme recovery. Purified enzyme was further characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis to homogeneity, and molecular mass was found to be around 55-70 kD. Like most of the serine alkaline proteases, purified fibrinolytic enzyme was stable in a temperature range of 25-40°C and pH range of 7-9. Offshoots of our research findings have revealed a broad application area of mixed mode chromatography.


Subject(s)
Bacillus/enzymology , Chromatography, Liquid/methods , Enzymes/isolation & purification , Fibrinolysis , Models, Theoretical , Enzymes/metabolism , Hydrogen-Ion Concentration , Temperature
8.
Can J Microbiol ; 61(1): 38-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25485592

ABSTRACT

Protoplast fusion was performed between a local Bacillus thuringiensis UV-resistant mutant 66/1a (Bt) and Bacillus sphaericus GHAI (Bs) to produce new Bacillus strains with a wider spectrum of action against different insects. Bt is characterized as sensitive to polymyxin and streptomycin and resistant to rifampicin and has shown 87% mortality against Spodoptera littoralis larvae at concentration of 1.5 × 10(7) cells/mL after 7 days of feeding; Bs is characterized as resistant to polymyxin and streptomycin and sensitive to rifampicin and has been shown to have 100% mortality against Culex pipiens after 1 day of feeding at the same concentration as that of Bt. Among a total of 64 Bt::Bs fusants produced on the selective medium containing polymyxin, streptomycin, and rifampicin, 17 fusants were selected because of their high mortality percentages against S. littoralis (Lepidoptera) and C. pipiens (Diptera). While Bt harboured 3 plasmids (600, 350, and 173 bp) and Bs had 2 plasmids (544 and 291 bp), all the selected fusants acquired plasmids from both parental strains. SDS-PAGE protein analysis of the 17 selected fusants and their parental strains confirmed that all fusant strains acquired and expressed many specific protein bands from the 2 parental strains, especially the larvicidal proteins to both lepidopteran and dipteran species with molecular masses of 65, 70, 80, 88, 100, and 135 kDa. Four protein bands with high molecular masses of 281, 263, 220, and 190 kDa, which existed in the Bt parental strain and did not exist in the Bs parental strain, and 2 other protein bands with high molecular masses of 185 and 180 kDa, which existed in the Bs parental strain and did not exist in the Bt parental strain, were expressed in most fusants. The results indicated the expression of some cry genes encoded for insecticidal crystal proteins from Bt and the binary toxin genes from Bs in all fusant strains. The recombinant fusants have more efficient and potential values for agricultural application compared with both the insecticidal Bt and the mosquitocidal Bs strains alone against S. littoralis and C. pipiens larvae, respectively.


Subject(s)
Bacillus thuringiensis/genetics , Bacillus/genetics , Culex/microbiology , Pest Control, Biological/methods , Spodoptera/microbiology , Animals , Antibiosis , Bacillus/physiology , Bacillus thuringiensis/physiology , Culex/physiology , Electrophoresis, Polyacrylamide Gel , Larva/microbiology , Larva/physiology , Plasmids/genetics , Plasmids/metabolism , Protoplasts/metabolism , Spodoptera/physiology
9.
Article in English | MEDLINE | ID: mdl-23385761

ABSTRACT

The binary toxin from Bacillus sphaericus consists of two proteins, BinA and BinB, which work together to exert toxicity against mosquito larvae. BinB is proposed to be a receptor-binding domain and internalizes BinA into the midgut cells, resulting in toxicity via an unknown mechanism. The functional form of BinB has been successfully crystallized. The crystals of BinB diffracted to a resolution of 1.75 Å and belong to space group P6(2)22, with unit-cell parameters a = b = 95.2, c = 154.9 Å. Selenomethionine-substituted BinB (SeMetBinB) was prepared and crystallized for experimental phasing. The SeMetBinB crystal data were collected at a wavelength of 0.979 Å and diffracted to a resolution of 1.85 Å.


Subject(s)
Bacillus/metabolism , Bacterial Toxins/chemistry , Crystallization , Crystallography, X-Ray
10.
Article in English | MEDLINE | ID: mdl-37693015

ABSTRACT

Although Culex species are considered to be equally affected by control measures targeting malaria vectors, there is still not enough evidence of the impact of interventions such as larviciding on the distribution of these mosquito species. The present study assessed the impact of a larviciding trial targeting malaria vectors on Culex mosquito species in the city of Yaoundé, Cameroon. A cluster randomized trial comparing 13 treated clusters and 13 untreated clusters was implemented. Data were collected at baseline and during the larviciding intervention, from March 2017 to November 2020. The microbial larvicide VectoMax G was applied once every 2 weeks in the intervention areas. Adult mosquitoes were collected using CDC light traps in both intervention and non-intervention areas and compared between arms. Globally, larviciding intervention was associated with 69% reduction in aquatic habitats with Culex larvae and 36.65% reduction of adult Culex densities in houses. Adult Culex densities were reduced both indoors (35.26%) and outdoors (42.37%). No change in the composition of Culex species was recorded. The study suggests a high impact of larviciding on Culex mosquito species distribution. The impact of the intervention can be improved if typical Culex breeding habitats including pit latrines are targeted.

11.
J Colloid Interface Sci ; 605: 881-887, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34371431

ABSTRACT

While chemical methods are often used to convert graphene oxide (GO) to reduced graphene oxide (RGO), chemical reduction is often environmentally unfriendly due to the high toxicity of many chemical reducing agents. To address this limitation, Bacillus sphaericus was used here for the green reduction of GO to RGO. Successful reduction was confirmed by various advanced characterization techniques including Ultraviolet-Visible (UV-vis), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope and Energy Dispersive Spectrometer (SEM-EDS). With a new peak attributable to RGO at 261 nm appearing in UV-vis and XRD spectra of the reduced product also developed a new peak at 2θ = 24.6° characteristic of RGO. Successful reduction was also supported by Raman spectroscopy which showed that the ratio of the intensity band (D band: G band) increased from 0.99 to 1.17. FTIR and XPS both confirmed that specific OH (3399 cm-1), CO (1734 cm-1) and COC (287 eV) bonds were reduced. Cyclic voltammograms (CVs) showed that the produced RGO exhibited good conductivity (changed from 0.8 to 1.1 mW·cm-2). This work developed a green and easy operated method of synthesizing RGO using microorganisms.


Subject(s)
Bacillus , Graphite , Bacillaceae , Oxides
12.
Heliyon ; 8(7): e09879, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35855981

ABSTRACT

Developing bio-based self-healing concrete aims to minimize durability problems related to cracking. In this study, MICP was used as a smart and eco-friendly approach to produce bio-based durable materials. Bacillus pasteurii (BP) and Bacillus sphaericus (BS) were added into mortar mixtures with 0.25% and 0.5% cement weight. All treated samples exhibited a significant decline in water uptake, capillary permeability, and volume of permeable voids, as compared to control with no bacteria. All treated samples showed significant increase in compressive strength by 28-50%, after 28 days of curing. At the age of 120 days, the flexural strength of all treated samples was significantly increased by 19.29-65.94%. SEM imaging and EDAX confirmed that treated samples were denser with less voids due to MICP. DTA verified that the calcite amount and the crystallinity degree were improved in treated samples. Load deflection of bacterial Reinforced-Laminates had less deformation than control. Reloaded bacterial Reinforced-Laminates exhibited excellent restoration of physico-mechanical properties and performance, after 28, 90, and 120 days, confirming the healing process. Microbial self-healing is an innovative approach for continuous repair of micro-cracks in concrete, improving its durability, thus can reduce the maintenance costs.

13.
Article in English | MEDLINE | ID: mdl-35664894

ABSTRACT

Bacterial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) have been used extensively for mosquito control. However, their efficacy varies greatly mainly due to factors related to target mosquitoes, larval habitat conditions, and inherent larvicide properties. We evaluated the efficacy of Bti (Bactivec®) and Bs (Griselesf®) for control of Anopheles gambiae complex, Culex quinquefasciatus and Aedes aegypti larvae under laboratory and semi-field conditions in northeastern Tanzania. Laboratory bioassays were conducted with five to six different concentrations of Bti and Bs, replicated four times and the experiment repeated on three different days. Larvae mortality was recorded at 24 or 48 h after the application of larvicide and subjected to Probit analysis. Laboratory bioassays were followed by semi-field trials to establish initial and residual activity of Bti and Bs. Semi-field trials were conducted in artificial larval habitats in the open sunlit ground and in "mosquito spheres". These artificial larval habitats were colonized with mosquito larvae, treated with Bti and Bs, and the impact of treatments on mosquito larvae was monitored daily. Lethal concentration values that caused 50% and 95% mortalities of test larvae (LC50 and LC95) showed that An. gambiae complex and Cx. quinquefasciatus tested were highly susceptible to Bti and Bs under laboratory conditions. Likewise, larvae of Ae. aegypti were highly susceptible to Bti, with LC95 value as low as 0.052 mg/l. However, Ae. aegypti larvae were not susceptible to Bs under practical doses of laboratory settings. In semi-field trials, all treatment dosages for Bti provided 91.0-100% larval mortality within 24 h whereas Bs resulted in 96.8-100% larval mortality within the same time-frame. Bs had a more prolonged residual activity, with pupal reductions range of 55.7-100% for 9 days at all application rates while the corresponding pupal reduction with Bti was 15.4-100% for 5 days. Due to the low residual activity of Bti and Bs tested, weekly application at a maximum label rate would be appropriate to reduce mosquito larvae in natural larval habitats. Based on laboratory findings, Bs product tested would not be recommended for use in the control of Ae. aegypti.

14.
Parasit Vectors ; 13(1): 446, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32891162

ABSTRACT

BACKGROUND: Vector control with Bacillus sphaericus (Bs) is an effective way to block the transmission of malaria. However, in practical application of Bs agents, a sublethal dose effect was often caused by insufficient dosing, and it is little known whether the Bs exposure would affect the surviving mosquitoes' vector capacity to malaria. METHODS: A sublethal dose of the Bs 2362 strain was administrated to the early fourth-instar larvae of Anopheles dirus to simulate shortage use of Bs in field circumstance. To determine vector competence, mosquitoes were dissected and the oocysts in the midguts were examined on day 9-11 post-infection with Plasmodium yoelii. Meanwhile, a SYBR quantitative PCR assay was conducted to examine the transcriptional level of the key immune molecules of mosquitoes, and RNA interference was utilized to validate the role of key immune effector molecule TEP1. RESULTS: The sublethal dose of Bs treatment significantly reduced susceptibility of An. dirus to P. yoelii, with the decrease of P. yoelii infection intensity and rate. Although there existed a melanization response of adult An. dirus following challenge with P. yoelii, it was not involved in the decrease of vector competence as no significant difference of melanization rates and densities between the control and Bs groups was found. Further studies showed that Bs treatment significantly increased TEP1 expression in the fourth-instar larvae (L4), pupae (Pu), 48 h post-infection (hpi) and 72 hpi (P < 0.001). Further, gene-silencing of TEP1 resulted in disappearance of the Bs impact on vector competence of An. dirus to P. yoelii. Moreover, the transcriptional level of PGRP-LC and Rel2 were significantly elevated by Bs treatment with decreased expression of the negative regulator Caspar at 48 hpi, which implied that the Imd signaling pathway was upregulated by Bs exposure. CONCLUSIONS: Bs exposure can reduce the vector competence of An. dirus to malaria parasites through upregulating Imd signaling pathway and enhancing the expression of TEP1. The data could not only help us to understand the impact and mechanism of Bs exposure on Anopheles' vector competence to malaria but also provide us with novel clues for wiping out malaria using vector control.


Subject(s)
Anopheles , Bacillaceae/immunology , Plasmodium yoelii , Animals , Anopheles/immunology , Anopheles/microbiology , Anopheles/parasitology , Disease Vectors , Drosophila Proteins/metabolism , Immunity , Insect Control , Insect Proteins/metabolism , Intestines/parasitology , Larva/immunology , Larva/metabolism , Larva/microbiology , Larva/parasitology , Malaria/transmission , Mosquito Vectors/immunology , Mosquito Vectors/microbiology , Mosquito Vectors/parasitology , Oocysts/growth & development , Oocysts/immunology , Oocysts/pathogenicity , Pest Control, Biological , Plasmodium yoelii/growth & development , Plasmodium yoelii/pathogenicity
15.
Folia Parasitol (Praha) ; 672020 Jan 01.
Article in English | MEDLINE | ID: mdl-32350159

ABSTRACT

We observed instances of cannibalism (intraspecific predation) among intra-instar larvae of Culex pipiens Linnaeus, 1758 while performing a bioassay of Lysinibacillus sphaericus (formerly named Bacillus sphaericus) larvicide, when the larvae were exposed to the larvicide for 48 h in the absence of food. Larvae without symptoms of poisoning attacked and devoured those visibly affected. Cannibalism was more prevalent in 1st-2nd instar larvae than in 3rd-4th instar. This phenomenon should be taken into account when interpreting the results of larvicide bioassays, especially when the exposure lasts over 24 h. The necessity of creating optimal conditions for organisms tested is emphasised.


Subject(s)
Bacillaceae/chemistry , Culex/drug effects , Insecticides/administration & dosage , Age Factors , Animals , Cannibalism , Culex/growth & development , Culex/physiology , Insecticides/chemistry , Larva/drug effects , Larva/growth & development , Larva/physiology
16.
J Med Entomol ; 56(2): 506-513, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30383248

ABSTRACT

Biorational mosquito larvicides based on microbial organisms and insect growth regulators (IGRs) have played a vital role in integrated mosquito control, particularly since the invasion of West Nile virus to the United States in 1999. Products that are formulated with technical powder of the bacterium, Bacillus sphaericus Neide (recently Lysinibacillus sphaericus Meyer and Neide), are among the ones that have been extensively applied to combat Culex and other mosquito species. Due to the simplicity of the binary toxins, resistance to this pesticide in laboratory and field populations of Culex pipiens L. complex has occurred globally since 1994. A Cx. pipiens population with a high level of resistance to B. sphaericus (VectoLex WDG) was identified in Salt Lake City, UT, in September 2016. The resistance ratios in this population were 20,780.0- and 23,926.9-fold at LC50 and LC90, respectively, when compared with a susceptible population of a laboratory reference colony of the same species. This B. sphaericus-resistant population remained mostly susceptible to other commonly used pesticides to control arthropods of public health and urban significance, including ones based on microbial organisms (Bacillus thuringiensis subsp. israelensis, spinosad, spinetoram, abamectin), IGRs (pyriproxyfen, methoprene, diflubenzuron, novaluron), organophosphate (temephos), neonicotinoid (imidacloprid), phenylpyrazole (fipronil), oxadiazine (indoxacarb), and pyrethroid (permethrin). Results are discussed according to the modes of action of the pesticides tested, and suggestions are made to manage B. sphaericus-resistant mosquito populations.


Subject(s)
Culex , Insecticide Resistance , Animals , Bacterial Toxins , Utah
17.
Parasit Vectors ; 12(1): 426, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31470885

ABSTRACT

Several trials and reviews have outlined the potential role of larviciding for malaria control in sub-Saharan Africa (SSA) to supplement the core indoor insecticide-based interventions. It has been argued that widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) interventions in many parts of Africa result in many new areas with low and focal malaria transmission that can be targeted with larvicides. As some countries in SSA are making good progress in malaria control, larval source management, particularly with bacterial larvicides, could be included in the list of viable options to maintain the gains achieved while paving the way to malaria elimination. We conducted a review of published literature that investigated the application of bacterial larvicides, Bacillus thuringiensis var. israelensis (Bti) and/or Bacillus sphaericus (Bs) for malaria vector control in SSA. Data for the review were identified through PubMed, the extensive files of the authors and reference lists of relevant articles retrieved. A total of 56 relevant studies were identified and included in the review. The findings indicated that, at low application rates, bacterial larvicide products based on Bti and/or Bs were effective in controlling malaria vectors. The larvicide interventions were found to be feasible, accepted by the general community, safe to the non-target organisms and the costs compared fairly well with those of other vector control measures practiced in SSA. Our review suggests that larviciding should gain more ground as a tool for integrated malaria vector control due to the decline in malaria which creates more appropriate conditions for the intervention and to the recognition of limitations of insecticide-based vector control tools. The advancement of new technology for mapping landscapes and environments could moreover facilitate identification and targeting of the numerous larval habitats preferred by the African malaria vectors. To build sustainable anti-larval measures in SSA, there is a great need to build capacity in relevant specialties and develop organizational structures for governance and management of larval source management programmes.


Subject(s)
Anopheles/microbiology , Bacillus thuringiensis/physiology , Malaria/prevention & control , Mosquito Control/methods , Pest Control, Biological/methods , Africa South of the Sahara , Animals , Costs and Cost Analysis , Ecosystem , Larva/microbiology , Malaria/transmission , Mosquito Vectors/microbiology
18.
Ecol Evol ; 8(15): 7563-7573, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151171

ABSTRACT

The microbial larvicides Bacillus thuringiensis var. israelensis and Bacillus sphaericus have been used extensively for mosquito control and have been found to be effective and safe to non-target organisms cohabiting with mosquito larvae. Recently developed long lasting microbial larvicides (LLML), although evading the previous challenge of short duration of activity, increase the risk of persistence of toxins in the treated larval habitats. This study monitored the impact of LLML FourStar® and LL3 on non-target organisms cohabiting with mosquito larvae in an operational study to control malaria vectors in western Kenya highlands. A total of 300 larval habitats were selected in three highland villages. The habitats were first monitored for 5 weeks to collect baseline data on non-target organisms cohabiting with mosquito larvae and then randomized into two treatment arms (respective FourStar® and LL3) and one control arm. Non-target organisms were sampled weekly for 5 months after treatment to assess the impact of LLML intervention. Before treatment, the mean density of all non-target organisms combined in the control, LL3 and FourStar® treated habitats was 1.42, 1.39 and 1.49 individuals per habitat per sampling occasion, respectively. Following treatment, this density remained fairly unchanged for 21 weeks at which time it was 1.82, 2.11, and 2.05 for the respective control, LL3 and FourStar® treated habitats. Statistical analysis revealed that LL3 and FourStar® did not significantly alter abundance, richness or diversity of the 11 taxa studied, when comparing the intervention and control larval habitats. However, both FourStar® and LL3 significantly reduced the density of malaria vectors. In conclusion, one round of label rate application of FourStar® or LL3 in natural larval habitats did not alter richness, abundance or diversity of the monitored aquatic non-target organisms cohabiting with mosquito larvae to an ecologically significant level.

19.
Enzyme Microb Technol ; 119: 65-70, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30243389

ABSTRACT

Penicillin acylase is commonly used to produce the medical intermediates of 6-Aminopenicillanic acid (6-APA) and 7-Aminodesacetoxycephalosporanic acid (7-ADCA) in industrial process. Nowadays, Penicillin G acylase (PGA) has been widely applied for making pharmaceutical intermediates, while penicillin V acylase (PVA) has been less used for that due to its low activity and poor conversion. In this study, a PVA from Bacillus sphaericus (BspPVA) was employed for directed evolution study with hoping to increase its catalytic efficiency. Finally, a triple mutant BspPVA-3 (T63S/N198Y/S110C) was obtained with 12.4-fold specific activity and 11.3-fold catalytic efficiency higher than BspPVA-wt (wild type of BspPVA). Moreover, the conversion yields of 6-APA catalyzed by BspPVA-3 reached 98% with 20% (w/v) penicillin V as substrate, which was significantly higher than that of the BspPVA-wt (85%). Based on the analysis of modeling, the enhancement of specific activity of mutant BspPVA-3 was probably attributed to the changes in the number of hydrogen bonds within the molecules. The triple mutant PVA developed in this study has a potential for large-scale industrial application for 6-APA production.


Subject(s)
Bacillus/enzymology , Mutation , Penicillanic Acid/analogs & derivatives , Penicillin Amidase/metabolism , Catalysis , Models, Molecular , Mutagenesis, Site-Directed , Penicillanic Acid/metabolism , Penicillin Amidase/chemistry , Penicillin Amidase/genetics , Protein Conformation , Substrate Specificity
20.
Parasit Vectors ; 11(1): 438, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30064498

ABSTRACT

BACKGROUND: Chemical-based malaria vector control interventions are threatened by the development of insecticide resistance and changes in the behavior of the vectors, and thus require the development of alternative control methods. Bacterial-based larvicides have the potential to target both insecticide resistant and outdoor-biting mosquitoes and are safe to use in the environment. However, the currently available microbial larvicide formulations have a short duration of activity requiring frequent re-applications which increase the cost of control interventions. This study was designed to evaluate the efficacy and duration of activity of two long-lasting formulations of Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (LL3 and FourStar®) under field conditions in western Kenya highlands. METHODS: Three sites were selected for this study in the highlands of western Kenya. In each site, one hundred anopheline larval habitats were selected and assigned to one of three arms: (i) LL3; (ii) FourStar®; and (iii) untreated control larval habitats. Four types of larval habitats were surveyed: abandoned gold mines, drainage canals, fish ponds and non-fish ponds. The habitats were sampled for mosquito larvae by using a standard dipping technique and collected larvae were recorded according to the larval stages of the different Anopheles species. The larvicides were applied at manufacturers' recommended dosage of 1 briquette per 100 square feet. Both treatment and control habitats were sampled for mosquito larvae immediately before treatment (day 0), and then at 24 hours, 3 days and weekly post-treatment for 5 months. RESULTS: Overall larval density in treatment habitats was significantly reduced after application of the two microbial larvicides as compared to the control habitats. Post-intervention reduction in anopheline larval density by LL3 was 65, 71 and 84% for 1 day, 2 weeks and 4 weeks, respectively. FourStar® reduced anopheline larval density by 60, 66 and 80% for 1 day, 2 weeks and 4 weeks, respectively. Comparisons between the treatments reveal that LL3 and FourStar® were similar in efficacy. A higher reduction in Anopheles larval density was observed in the abandoned goldmines, while drainage canals had the lowest reduction. CONCLUSIONS: Both LL3 and FourStar® long-lasting microbial larvicides were effective in reducing immature stages of An. gambiae complex and An. funestus group species, with significant reductions lasting for three months post-application.


Subject(s)
Anopheles/microbiology , Bacillus thuringiensis/physiology , Larva/microbiology , Malaria/transmission , Mosquito Control/methods , Pest Control, Biological/methods , Animals , Fresh Water , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL