Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 21(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114200

ABSTRACT

Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18ßH-glycyrrhetinic acid (18ßH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18ßH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Endotoxemia/drug therapy , Lipopolysaccharides/adverse effects , Macrophages/cytology , Pentacyclic Triterpenes/administration & dosage , Peritonitis/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/genetics , Endotoxemia/metabolism , Glutathione/metabolism , Glycyrrhetinic Acid/chemistry , Heme Oxygenase-1/genetics , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Membrane Proteins/genetics , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Peritonitis/chemically induced , Peritonitis/genetics , Peritonitis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
2.
Bioorg Chem ; 86: 112-118, 2019 05.
Article in English | MEDLINE | ID: mdl-30685642

ABSTRACT

EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzamides/pharmacology , Inflammation/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Survival/drug effects , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
3.
Exp Parasitol ; 198: 39-45, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30716304

ABSTRACT

In recent years, several studies demonstrated the role of exosomes in intercellular communications, several Leishmania species belonging to subgenera Leishmania and Viannia have been demonstrated to release exosomes, and their role in parasite-macrophage interactions and in leishmaniasis development has been investigated. However, the release of exosomes by Leishmania infantum has not been studied so far. The aim of this study was to isolate and characterize L. infantum exosomes, and to investigate the biological activity of these exosomes in macrophage cultures. To this end, exosomes were collected from both amastigote and promastigote L. infantum conditioned medium by ultracentrifugation. Exosomes were then characterized by monitoring the presence of HSP70, HSP83/90 and acetylcholinesterase activity. Moreover, extracellular vesicles-tracking analysis revealed that promastigote and amastigote exosomes had mean diameter of 122 ±â€¯56 nm and 115 ±â€¯65 nm, respectively. Human monocytic cell line U937-derived macrophages treated with promastigote and amastigote exosomes showed an increase in motility and an overproduction of interleukin IL-10 and IL-18 reduction, involved in immune response. Since L. infantum exosomes demonstrated the capacity to modulate the chemotactic behaviour of the cells studied and cytokines production, they could contribute in the disease establishment and may be considered an appropriate candidate for a vaccine therapy in prophylaxis and treatment.


Subject(s)
Chemotaxis/physiology , Cytokines/metabolism , Exosomes/metabolism , Leishmania infantum/metabolism , Cytokines/genetics , Gene Expression , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Interleukin-10/metabolism , Interleukin-18/metabolism , U937 Cells
4.
Parasitol Res ; 115(5): 2061-71, 2016 May.
Article in English | MEDLINE | ID: mdl-26860840

ABSTRACT

Blastocystis spp., one of the most common parasites colonizing the human intestine, is an extracellular, luminal protozoan with controversial pathogenesis. The host's immune response against Blastocystis spp. infection has also not been defined yet. Therefore, this research aimed to assess the potential pathogenicity of this parasite and its ability to modulate the immune response in experimental infected immunocompetent and immunosuppresed mice. These results demonstrated that the infected immunosuppressed mice were more affected than infected immunocompetent mice. Histopathological examination of the small intestine in the infected immunosuppressed mice showed that Blastocystis spp. infiltrated all the layers. Moreover, the epithelia showed exfoliation and inflammatory cell infiltration in submucosa compared to that of the infected immunocompetent mice. As well, examination of the large intestine of the infected immunosuppressed group showed severe goblet cell hyperplasia. Blastocystis spp. infiltrated all the large intestine layers compared to that of the infected immunocompetent group. Furthermore, there was a significant upregulation of the expression of proinflammatory cytokines: interleukin 12 (IL-12) and tumor necrosis factor alpha (TNF-α) in the infected immunosuppressed mice compared to that of the infected immunocompetent ones (p ≤ 0.004 and p ≤ 0.002, respectively). However, the expression of anti-inflammatory cytokines (IL-4 and IL-10) was significantly downregulated in the infected immunosuppressed group compared to that of the infected immunocompetent group one at 10 days postinfection (p ≤ 0.002 and p ≤ 0.001, respectively). The results of this study revealed that Blastocystis spp. affected the production of pro- and anti-inflammatory cytokines in both groups of mice compared to healthy normal (naive) group. Additionally, these data showed that there was a significant upregulation (p ≤ 0.005) of the locally synthesized antibody: secretary IgA (sIgA) in the gut of the infected immunocompetent mice when compared to that of the infected immunosuppressed ones.


Subject(s)
Blastocystis Infections/immunology , Blastocystis/immunology , Animals , Blastocystis/isolation & purification , Blastocystis Infections/parasitology , Cytokines , Goblet Cells/pathology , Humans , Interleukin-10/metabolism , Interleukin-4/metabolism , Intestine, Large/parasitology , Intestine, Large/pathology , Male , Mice
5.
Int Immunopharmacol ; 124(Pt B): 111058, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844466

ABSTRACT

Mycobacterium tuberculosis (M.tb), the most successful pathogen responsible for approximately 1.6 million deaths in 2021, employs various strategies to evade host antibacterial defenses, including mechanisms to counteract nitric oxide (NO) and certain cytokines. While Amyloid ß (A4) precursor-like protein 2 (Aplp2) has been implicated in various physiological and pathological processes, its role in tuberculosis (TB) pathogenesis remains largely uncharted. This study unveils a significant reduction in Aplp2 levels in TB patients, M.tb-infected macrophages, and mice. Intriguingly, Aplp2 mutation or knockdown results in diminished macrophage-mediated killing of M.tb, accompanied by decreased inducible nitric oxide synthase (iNOS) expression and reduced cytokine production, notably interleukin-1ß (Il-1ß). Notably, Aplp2 mutant mice exhibit heightened susceptibility to mycobacterial infection, evident through aggravated histopathological damage and increased lung bacterial loads, in contrast to Mycobacterium bovis BCG-infected wild-type (WT) mice. Mechanistically, the cleaved product of APLP2, AICD2, generated by γ-secretase, translocates to the nucleus, where it interacts with p65, culminating in enhanced the nuclear factor κB (NF-κB) transcriptional activity. This interaction triggers the upregulation of Il-1ß and iNOS expression. Collectively, our findings illuminate Aplp2's pivotal role in safeguarding against mycobacterial infections by promoting M.tb clearance through NO- or IL-1ß-mediated bactericidal effects. Therefore, we unveil a novel immune evasion strategy employed by M.tb, which could potentially serve as a target for innovative TB interventions.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Amyloid beta-Peptides/metabolism , Macrophages , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Amyloid beta-Protein Precursor/metabolism
6.
J Immunol Methods ; 522: 113557, 2023 11.
Article in English | MEDLINE | ID: mdl-37689389

ABSTRACT

Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.


Subject(s)
Anaphylaxis , Wasps , Animals , Mice , Wasps/metabolism , Wasp Venoms/metabolism , Antibody Formation , Allergens , CD4-Positive T-Lymphocytes
7.
Front Immunol ; 13: 1007042, 2022.
Article in English | MEDLINE | ID: mdl-36225930

ABSTRACT

Chimeric antigen receptor (CAR)-T cells are engineered to identify and eliminate cells expressing a target antigen. Current manufacturing protocols vary between commercial CAR-T cell products warranting an assessment of these methods to determine which approach optimally balances successful manufacturing capacity and product efficacy. One difference between commercial product manufacturing methods is whether T cell engineering begins with fresh (unfrozen) patient cells or cells that have been cryopreserved prior to manufacture. Starting with frozen PBMC material allows for greater manufacturing flexibility, and the possibility of collecting and storing blood from patients prior to multiple lines of therapy. We prospectively analyzed if second generation anti-CD19 CAR-T cells with either CD28 or 4-1BB co-stimulatory domains have different phenotype or function when prepared side-by-side using fresh or cryopreserved PBMCs. We found that cryopreserved PBMC starting material is associated with slower CAR-T cell expansion during manufacture but does not affect phenotype. We also demonstrate that CAR-T cell activation, cytokine production and in vitro anti-tumor cytotoxicity were not different when CAR-T cells were manufactured from fresh or cryopreserved PBMC. As CAR-T cell therapy expands globally, the need for greater flexibility around the timing of manufacture will continue to grow. This study helps support the concept that cryopreservation of PBMCs could be the solution to these issues without compromising the quality of the final CAR-T product.


Subject(s)
Receptors, Chimeric Antigen , CD28 Antigens , Cytokines , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell
8.
Oncol Lett ; 16(4): 4707-4712, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30214604

ABSTRACT

Toll-like receptor (TLR) agonists are known for their ability to inhibit tumor progression via enhancing antitumor cytokines production and cytotoxic T lymphocyte (CTL) activity. Recombinant Helicobacter pylori neutrophil-activating protein fused with maltose-binding protein (rMBP-NAP) has been reported as a novel TLR agonist for antitumor treatment in murine models. The present study aimed to determine the potential and efficacy of the rMBP-NAP for antitumor treatment prior to further clinical trials. The rMBP-NAP was expressed and purified for subsequent experiments. Peripheral blood mononuclear cells (PBMCs) from health donors and patients with lung cancer (LC) were incubated with PBS and 0.2 mg/ml rMBP-NAP. Antitumor cytokines production was assayed using ELISA and reverse transcription-quantitative polymerase chain reaction analysis. The cytolytic activity of PBMCs and the number of Interferon-γ (IFN-γ)-secreting cells were assayed using lactate dehydrogenase and Enzyme-linked ImmunoSpot assays, respectively. The results from the present study revealed that the expression of IFN-γ, interleukin (IL)-2, tumor necrosis factor-α and IL-12 of PBMCs from patients with LC and healthy donors were significantly increased following treatment with rMBP-NAP (P<0.05). Additionally, rMBP-NAP significantly upregulated the number of IFN-γ-secreting cells in PBMCs and prominently increased the cytotoxic activity of PBMCs (P<0.05). Furthermore, the expression of TLR2 was significantly enhanced following rMBP-NAP stimulation (P<0.05), which indicated that rMBP-NAP may serve an antitumor role via TLR2 signaling pathways. Overall, these results demonstrated that rMBP-NAP possesses the potential to be a novel immunomodulatory candidate drug and requires further evaluation in clinical trials.

9.
Asian J Transfus Sci ; 4(2): 78-85, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20859504

ABSTRACT

Very few studies in humans have investigated the laboratory evidences suggestive of transfusion-associated immunologic changes. In this prospective study, we examined the effects of perioperative blood transfusion on immune response, by measuring various cytokines production, namely, interferon-gamma (IFN-γ), interleukin-10 (IL-10), and Fas Ligand (FasL). A total of 40 patients undergoing neurosurgery were randomly allocated into four groups: (a) no transfusion, (b) allogeneic non-leukofiltered transfusion, (c) prestorage leukofiltered transfusion, (d) autologous transfusion. Samples were collected before operation (day 0) and postoperative days (post-op) 1, 7, and 14. IFN-γ and IL-10 production capacity was measured in supernatant after whole blood culture and serum FasL levels in patients' sera using commercially available ELISA kits. Change in ratios (cytokine value after PHA stimulation/control value) of IFN-γ and IL-10 and percentage change from baseline for serum FasL levels across different transfusion groups during the sampling period were calculated. There was an increase in IL-10 production in patients receiving allogeneic non-leukofiltered transfusion on days 1 and 7 (mean ratio 2.22 (± 2.16), 4.12 (± 1.71), 4.46 (± 1.97) on days 0, 1, and 7, respectively). Similarly there was a significant (P<0.05) decrease in IFN-γ production in patients who received allogeneic non-leukofiltered red cell transfusion on post-op days 1, 7, and 14 (mean ratio 6.88 (± 4.56), 2.53 (± 0.95), 3.04 (± 1.38) and 2.58 (± 1.48) on day 0, 1, 7, and 14, respectively). Serum FasL production was increased across all patients till 7th day except for 'no transfusion' group and this increase was most significant in the non-leukofiltered group. We conclude that one time transfusion leads to quantitative changes in levels of these cytokines largely through interplay of Th2/Th1 pathways in allogeneic nonleukofiltered blood transfusion; however, soluble mediators like FasL which are also present in autologous and leukofiltered blood products may contribute toward minor immunologic effect in these settings.

SELECTION OF CITATIONS
SEARCH DETAIL