Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

2.
Annu Rev Cell Dev Biol ; 33: 467-489, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28992438

ABSTRACT

In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.


Subject(s)
Proteostasis , Sterols/metabolism , Animals , Endoplasmic Reticulum-Associated Degradation , Humans , Lipid Metabolism , Signal Transduction , Sterol Regulatory Element Binding Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593069

ABSTRACT

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Subject(s)
Aedes , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Flavivirus/genetics , Zika Virus/genetics , Ubiquitin/metabolism , Ligases/metabolism , Viral Proteins/metabolism , Mammals
4.
Mol Cell ; 69(2): 306-320.e4, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29351849

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) removes misfolded proteins from the ER membrane and lumen by the ubiquitin-proteasome pathway. Retrotranslocation of ubiquitinated substrates to the cytosol is a universal feature of ERAD that requires the Cdc48 AAA-ATPase. Despite intense efforts, the mechanism of ER exit, particularly for integral membrane (ERAD-M) substrates, has remained unclear. Using a self-ubiquitinating substrate (SUS), which undergoes normal retrotranslocation independently of known ERAD factors, and the new SPOCK (single plate orf compendium kit) micro-library to query all yeast genes, we found the rhomboid derlin Dfm1 was required for retrotranslocation of both HRD and DOA ERAD pathway integral membrane substrates. Dfm1 recruited Cdc48 to the ER membrane with its unique SHP motifs, and it catalyzed substrate extraction through its conserved rhomboid motifs. Surprisingly, dfm1Δ can undergo rapid suppression, restoring wild-type ERAD-M. This unexpected suppression explained earlier studies ruling out Dfm1, and it revealed an ancillary ERAD-M retrotranslocation pathway requiring Hrd1.


Subject(s)
Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Membrane Proteins/physiology , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Valosin Containing Protein/metabolism
5.
Mol Cell ; 70(3): 516-530.e6, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706535

ABSTRACT

Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Lectins/metabolism , Neoplasm Proteins/metabolism , Polysaccharides/metabolism , Cell Line , Cell Line, Tumor , Glycoproteins/metabolism , Glycosylation , HEK293 Cells , Humans , K562 Cells , Protein Folding , Protein Translocation Systems/metabolism
6.
Proc Natl Acad Sci U S A ; 120(2): e2212644120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595688

ABSTRACT

Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.


Subject(s)
Ceruloplasmin , Endoplasmic Reticulum-Associated Degradation , Mice , Animals , Ceruloplasmin/genetics , Ubiquitin-Protein Ligases/metabolism , Endoplasmic Reticulum/metabolism , Proteins/metabolism , Homeostasis , Iron/metabolism
7.
Trends Biochem Sci ; 45(9): 723-725, 2020 09.
Article in English | MEDLINE | ID: mdl-32616332

ABSTRACT

The endoplasmic reticulum-associated degradation (ERAD) pathway eliminates misfolded proteins. The Hrd1 complex represents the main gate mediating retrotranslocation of ER luminal misfolded (ERAD-L) substrates to the cytosol. A recent cryo-electron microscopy (cryo-EM) study by Wu et al. unveils the structural features of active Hrd1, providing mechanistic insights into the movement of proteins directed for degradation across ER membranes.


Subject(s)
Cryoelectron Microscopy , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
8.
J Mol Cell Cardiol ; 187: 51-64, 2024 02.
Article in English | MEDLINE | ID: mdl-38171043

ABSTRACT

Senescence of vascular smooth muscle cells (VSMCs) is a key contributor to plaque vulnerability in atherosclerosis (AS), which is affected by endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the crosstalk between ER stress and ROS production in the pathogenesis of VSMC senescence remains to be elucidated. ER-associated degradation (ERAD) is a complex process that clears unfolded or misfolded proteins to maintain ER homeostasis. HRD1 is the major E3 ligase in mammalian ERAD machineries that catalyzes ubiquitin conjugation to the unfolded or misfolded proteins for degradation. Our results showed that HRD1 protein levels were reduced in human AS plaques and aortic roots from ApoE-/- mice fed with high-fat diet (HFD), along with the increased ER stress response. Exposure to cholesterol in VSMCs activated inflammatory signaling and induced senescence, while reduced HRD1 protein expression. CRISPR Cas9-mediated HRD1 knockout (KO) exacerbated cholesterol- and thapsigargin-induced cell senescence. Inhibiting ER stress with 4-PBA (4-Phenylbutyric acid) partially reversed the ROS production and cell senescence induced by HRD1 deficiency in VSMCs, suggesting that ER stress alone could be sufficient to induce ROS production and senescence in VSMCs. Besides, HRD1 deficiency led to mitochondrial dysfunction, and reducing ROS production from impaired mitochondria partly reversed HRD1 deficiency-induced cell senescence. Finally, we showed that the overexpression of HDR1 reversed cholesterol-induced ER stress, ROS production, and cellular senescence in VSMCs. Our findings indicate that HRD1 protects against senescence by maintaining ER homeostasis and mitochondrial functionality. Thus, targeting HRD1 function may help to mitigate VSMC senescence and prevent vascular aging related diseases. TRIAL REGISTRATION: A real-world study based on the discussion of primary and secondary prevention strategies for coronary heart disease, URL:https://www.clinicaltrials.gov, the trial registration number is [2022]-02-121-01.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Animals , Humans , Mice , Atherosclerosis/metabolism , Cellular Senescence , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum-Associated Degradation , Mammals/metabolism , Muscle, Smooth, Vascular/metabolism , Proteins/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
Med Res Rev ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922930

ABSTRACT

Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.

10.
J Biol Chem ; 299(6): 104723, 2023 06.
Article in English | MEDLINE | ID: mdl-37075843

ABSTRACT

Dysregulation of autophagy has been implicated in the development of many diseases, including cancer. Here, we revealed a novel function of the E3 ubiquitin ligase HRD1 in non-small cell lung carcinoma (NSCLC) metastasis by regulating autophagy. Mechanistically, HRD1 inhibits autophagy by promoting ATG3 ubiquitination and degradation. Additionally, a pro-migratory and invasive factor, MIEN1 (migration and invasion enhancer 1), was found to be autophagically degraded upon HRD1 deficiency. Importantly, expression of both HRD1 and MIEN1 are upregulated and positively correlated in lung tumors. Based on these results, we proposed a novel mechanism of HRD1 function that the degradation of ATG3 protein by HRD1 leads to autophagy inhibition and MIEN1 release, thus promoting NSCLC metastasis. Therefore, our findings provided new insights into the role of HRD1 in NSCLC metastasis and new therapeutic targets for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
11.
J Biol Chem ; 299(8): 104939, 2023 08.
Article in English | MEDLINE | ID: mdl-37331602

ABSTRACT

The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Lipids , Saccharomyces cerevisiae Proteins , Anti-Infective Agents/pharmacology , Drug Resistance, Fungal/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Hygromycin B/pharmacology , Lipids/biosynthesis , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38787366

ABSTRACT

Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.


Subject(s)
Encephalitis Virus, Japanese , Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HeLa Cells , Membrane Proteins/metabolism , Membrane Proteins/genetics , Host-Pathogen Interactions , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Proteins/metabolism , Proteins/genetics , Antigens, Differentiation
13.
Mod Pathol ; : 100572, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033963

ABSTRACT

Sarcomas rarely develop in bones previously compromised by infarcts. These infarct-associated sarcomas often present as undifferentiated pleomorphic sarcomas (UPS), and their genetic characteristics are poorly understood. High-grade spindle cell/UPS of bone are typically treated with a combination of surgery and chemotherapy, similar to osteosarcoma. We conducted a detailed clinicopathologic and genomic analysis of six cases of intraosseous sarcomas arising from histologically and radiographically confirmed bone infarcts. We analyzed 523 genes for sequence-level mutations using next-generation sequencing with the TruSight Oncology 500 panel and utilized whole-genome SNP Microarray (OncoScan CNV) to detect copy number alterations and loss of heterozygosity (LOH). Genomic instability was assessed through Homologous Recombination Deficiency (HRD) metrics, incorporating LOH, telomeric allelic imbalance, and large-scale state transitions. FISH and immunohistochemistry validated the findings. The cohort included three men and three women, with a median age of 70, and tumors located in the femur and tibia. Five of the six patients developed distant metastases. Treatment involved surgery and chemotherapy or immune checkpoint inhibitors. Genomic analysis revealed significant complexity and high HRD scores, ranging from 32 to 57 (with a cut-off of 32). Chromosome 12 alterations, including segmental amplification or chromothripsis, were observed in four cases. Notably, MDM2 amplification, confirmed by FISH, was detected in two cases. Homozygous deletion of CDKN2A/B was observed in all six cases. Tumor mutational burden (TMB) levels ranged from 2.4 to 7.9 mutations per megabase. Notable pathogenic mutations included H3-3A mutations (p.G35R and p.G35W), and mutations in HRAS, DNMT3A, NF2, PIK3CA, POLE, and TP53, each in one case. These results suggest that high-grade infarct-associated sarcomas of bone, while sharing high levels of structural variations with osteosarcoma, may exhibit potentially less frequent TP53 mutations and more common CDKN2A/B deletions. This points to the possibility that the mutation spectrum and disrupted pathways could be distinct from conventional osteosarcoma.

14.
FASEB J ; 37(11): e23221, 2023 11.
Article in English | MEDLINE | ID: mdl-37795761

ABSTRACT

Ubiquitin fold modifier 1 is a small ubiquitin-like protein modifier that is essential for embryonic development of metazoans. Although UFMylation has been connected to endoplasmic reticulum homeostasis, the underlying mechanisms and the relevant cellular targets are largely unknown. Here, we show that HRD1, a ubiquitin ligase of ER-associated protein degradation (ERAD), is a novel substrate of UFM1 conjugation. HRD1 interacts with UFMylation components UFL1 and DDRGK1 and is UFMylated at Lys610 residue. In UFL1-depleted cells, the stability of HRD1 is increased and its ubiquitination modification is reduced. In the event of ER stress, the UFMylation and ubiquitination modification of HRD1 is gradually inhibited over time. Alteration of HRD1 Lys610 residue to arginine impairs its ability to degrade unfolded or misfolded proteins to disturb protein processing in ER. These results suggest that UFMylation of HRD1 facilitates ERAD function to maintain ER homeostasis.


Subject(s)
Endoplasmic Reticulum Stress , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Endoplasmic Reticulum Stress/physiology , Proteins/metabolism , Endoplasmic Reticulum/metabolism , Ubiquitin/metabolism , Homeostasis , Endoplasmic Reticulum-Associated Degradation
15.
Neurochem Res ; 49(1): 117-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37632637

ABSTRACT

Parkinson's Disease (PD) is caused by many factors and endoplasmic reticulum (ER) stress is considered as one of the responsible factors for it. ER stress induces the activation of the ubiquitin-proteasome system to degrade unfolded proteins and suppress cell death. The ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation 1 (HRD1) and its stabilizing molecule, the suppressor/enhancer lin-12-like (SEL1L), can suppress the ER stress via the ubiquitin-proteasome system, and that HRD1 can also suppress cell death in familial and nonfamilial PD models. These findings indicate that HRD1 and SEL1L might be key proteins for the treatment of PD. Our study aimed to identify the compounds with the effects of upregulating the HRD1 expression and suppressing neuronal cell death in a 6-hydroxydopamine (6-OHDA)-induced cellular PD model. Our screening by the Drug Gene Budger, a drug repositioning tool, identified luteolin as a candidate compound for the desired modulation of the HRD1 expression. Subsequently, we confirmed that low concentrations of luteolin did not show cytotoxicity in SH-SY5Y cells, and used these low concentrations in the subsequent experiments. Next, we demonsrated that luteolin increased HRD1 and SEL1L mRNA levels and protein expressions. Furthermore, luteolin inhibited 6-OHDA-induced cell death and suppressed ER stress response caused by exposure to 6-OHDA. Finally, luteolin did not reppress 6-OHDA-induced cell death when expression of HRD1 or SEL1L was suppressed by RNA interference. These findings suggest that luteolin might be a novel therapeutic agent for PD due to its ability to suppress ER stress through the activation of HRD1 and SEL1L.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Ubiquitin-Protein Ligases/metabolism , Luteolin/pharmacology , Proteasome Endopeptidase Complex/metabolism , Up-Regulation , Oxidopamine/toxicity , Cell Death , Proteins/metabolism , Ubiquitin/metabolism
16.
Gynecol Oncol ; 187: 221-226, 2024 08.
Article in English | MEDLINE | ID: mdl-38821039

ABSTRACT

OBJECTIVE: Due to limited data on homologous recombination deficiency (HRD) in older patients (≥ 70 years) with advanced stage high grade serous ovarian cancer (HGSC), we aimed to determine the rates of HRD at diagnosis in this age group. METHODS: From the Phase 3 trial VELIA the frequency of HRD and BRCA1/2 pathogenic variants (PVs) was compared between younger (< 70 years) and older participants. HRD and somatic(s) BRCA1/2 pathogenic variants (PVs) were determined at diagnosis using Myriad myChoice® CDx and germline(g) BRCA1/2 PVs using Myriad BRACAnalysis CDx®. HRD was defined if a BRCA PV was present, or the genomic instability score (GIS) met threshold (GIS ≥ 33 & ≥ 42 analyzed). RESULTS: Of 1140 participants, 21% were ≥ 70 years. In total, 26% (n = 298) had a BRCA1/2 PV and HRD, 29% (n = 329) were HRD/BRCA wild-type, 33% (n = 372) non-HRD, and 12% HR-status unknown (n = 141). HRD rates were higher in younger participants, 59% (n = 476/802), compared to 40% (n = 78/197) of older participants (GIS ≥ 42) [p < 0.001]; similar rates demonstrated with GIS ≥ 33, 66% vs 48% [p < 0.001]. gBRCA PVs observed in 24% younger vs 8% of older participants (p < 0.001); sBRCA in 8% vs 10% (p = 0.2559), and HRD (GIS ≥ 42) not due to gBRCA was 35% vs 31% (p = 0.36). CONCLUSIONS: HRD frequency was similar in participants aged < 70 and ≥ 70 years (35% vs 31%) when the contribution of gBRCA was excluded; rates of sBRCA PVs were also similar (8% v 10%), thus underscoring the importance of HRD and BRCA testing at diagnosis in older patients with advanced HGSC given the therapeutic implications.


Subject(s)
BRCA1 Protein , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Middle Aged , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Aged, 80 and over , Age Factors , Adult , Homologous Recombination , Neoplasm Staging , Neoplasm Grading , Genetic Testing/methods
17.
Gynecol Oncol ; 180: 91-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061276

ABSTRACT

OBJECTIVES: We evaluated usability of single base substitution signature 3 (Sig3) as a biomarker for homologous recombination deficiency (HRD) in tubo-ovarian high-grade serous carcinoma (HGSC). MATERIALS AND METHODS: This prospective observational trial includes 165 patients with advanced HGSC. Fresh tissue samples (n = 456) from multiple intra-abdominal areas at diagnosis and after neoadjuvant chemotherapy (NACT) were collected for whole-genome sequencing. Sig3 was assessed by fitting samples independently with COSMIC v3.2 reference signatures. An HR scar assay was applied for comparison. Progression-free survival (PFS) and overall survival (OS) were studied using Kaplan-Meier and Cox regression analysis. RESULTS: Sig3 has a bimodal distribution, eliminating the need for an arbitrary cutoff typical in HR scar tests. Sig3 could be assessed from samples with low (10%) cancer cell proportion and was consistent between multiple samples and stable during NACT. At diagnosis, 74 (45%) patients were HRD (Sig3+), while 91 (55%) were HR proficient (HRP, Sig3-). Sig3+ patients had longer PFS and OS than Sig3- patients (22 vs. 13 months and 51 vs. 34 months respectively, both p < 0.001). Sig3 successfully distinguished the poor prognostic HRP group among BRCAwt patients (PFS 19 months for Sig3+ and 13 months for Sig3- patients, p < 0.001). However, Sig3 at diagnosis did not predict chemoresponse anymore in the first relapse. The patient-level concordance between Sig3 and HR scar assay was 87%, and patients with HRD according to both tests had the longest median PFS. CONCLUSIONS: Sig3 is a prognostic marker in advanced HGSC and useful tool in patient stratification for HRD.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Cicatrix/pathology , Cystadenocarcinoma, Serous/pathology , Ovarian Neoplasms/pathology , Prognosis , Progression-Free Survival
18.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791269

ABSTRACT

BRCA mutation and homologous recombination deficiency (HRD) are the criteria for the administration of PARP inhibitor (PARPi) maintenance therapy. It is known that PARPi efficacy is related to platinum sensitivity and that the latter can be demonstrated from the CA-125 elimination rate constant (KELIM). This study aims to investigate if KELIM can be another tool in the identification of patients that could be benefit from PARPi therapy. Retrospective analysis of patients with high-grade serous advanced ovarian cancer that underwent cytoreduction and was further tested for HRD status. The HRD status was tested either by myChoice HRD CDx assay or by RediScore assay. KELIM score was measured in both neoadjuvant and adjuvant settings with the online tool biomarker-kinetics.org. A total of 39 patients had available data for estimating both HRD status and KELIM score. When assuming KELIM as a binary index test with the value 1 as the cut-off point, the sensitivity was 0.86, 95% CI (0.64-0.97) and the specificity was 0.83, 95% CI (0.59-0.96). On the other hand, when assuming KELIM as a continuous index test, the area under the curve (AUC) was 81% and the optimal threshold, using the Youden index, was identified as 1.03 with a sensitivity of 85.7% and a specificity of 83.3%. KELIM score seems to be a new, cheaper, and faster tool to identify patients that can benefit from PARPi maintenance therapy.


Subject(s)
CA-125 Antigen , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Adult , Aged , Female , Humans , Middle Aged , Biomarkers, Tumor/genetics , CA-125 Antigen/blood , Cystadenocarcinoma, Serous/diagnosis , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Neoplasm Grading , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pilot Projects , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Retrospective Studies
19.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542143

ABSTRACT

The emergence of targeted therapeutics in ovarian cancer, particularly poly (ADP-ribose) polymerase inhibitors (PARPi's), has created additional opportunities for patients seeking frontline and recurrent disease management options. In particular, PARPi's have shown clinical benefits in BRCA mutant and/or homologous recombination deficient (HRD) ovarian cancer. Until recently, response was thought to be limited in BRCA wild-type, homologous recombination proficient (HRP) cancers. Therefore, attempts have been made at combination therapy involving PARPi to improve patient outcomes. Additionally, immune checkpoint inhibitors (ICIs) have demonstrated underwhelming results involving ovarian cancer. Many are searching for reliable biomarkers of immune response to increase efficacy of ICI therapy involving ovarian cancer. In this review, we examine the evidence supporting the combination of PARPi and ICIs in ovarian cancer, which is still lacking.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Homologous Recombination , Biomarkers
20.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612902

ABSTRACT

Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , B7-H1 Antigen , BRCA1 Protein , Protein-Tyrosine Kinases , BRCA2 Protein , Proto-Oncogene Proteins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL