Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Total Environ ; 926: 171900, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527552

ABSTRACT

The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.


Subject(s)
Ammonium Compounds , Nitrites , Nitrites/metabolism , Oxidation-Reduction , Bioreactors/microbiology , Bacteria/metabolism , Nitrogen/metabolism , Sewage/microbiology , Ammonium Compounds/metabolism
2.
Water Res ; 250: 121022, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113591

ABSTRACT

Granule-based partial nitritation and anaerobic ammonium oxidation (PN/A) is an energy-efficient approach for treating ammonia wastewater. When treating low-strength ammonia wastewater, the stable synergy between PN and anammox is however difficult to establish due to unstable dissolved oxygen control. Here, we proposed, the PN/A granular sludge formed by a micro-oxygen-driven iron redox cycle with continuous aeration (0.42 ± 0.10 mg-O2/L) as a novel strategy to achieve stable and efficient nitrogen (N) removal. 240-day bioreactor operation showed that the iron-involved reactor had 37 % higher N removal efficiency than the iron-free reactor. Due to the formation of the microaerobic granular sludge (MGS), the bio(chemistry)-driven iron cycle could be formed with the support of anaerobic ammonium oxidation coupled to Fe3+ reduction. Both ammonia-oxidizing bacteria and generated Fe2+ could scavenge the oxygen as a defensive shield for oxygen-sensitive anammox bacteria in the MGS. Moreover, the iron minerals derived from iron oxidation and Fe-P precipitates were also deposited on the MGS surface and/or embedded in the internal channels, thus reducing the size of the channels that could limit oxygen mass transfer inside the MGS. The spatiotemporal assembly of diverse functional microorganisms in the MGS for the realization of stable PN/A could be achieved with the support of the iron redox cycle. In contrast, the iron-free MGS could not optimize oxygen mass transfer, which led to an unstable and inefficient PN/A. This work provides an alternative iron-related autotrophic N removal for low-strength ammonia wastewater.


Subject(s)
Ammonium Compounds , Sewage , Sewage/microbiology , Wastewater , Ammonia , Iron , Anaerobiosis , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen , Oxygen , Denitrification
3.
Sci Total Environ ; 926: 171890, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521280

ABSTRACT

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Subject(s)
Ammonium Compounds , Wastewater , Sewage/microbiology , Waste Disposal, Fluid , Anaerobiosis , Phosphorus , Carbon , Propionates , Denitrification , Bioreactors/microbiology , Nitrogen , Acetates , Glucose
4.
Bioresour Technol ; 395: 130327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242244

ABSTRACT

Nitrite-oxidizing bacteria (NOB) seriously threaten the partial nitritation and Anammox (PN/A) process, hindering its mainstream application. Herein, a one-stage PN/A reactor was continuously operated for 245 days under nitrogen loading rate lifted from 0.4 g N/L/d to 0.6 g N/L/d and 0.8 g N/L/d with the nitrogen removal efficiency of 71 %, 64 %, and 41 %, respectively. Furthermore, the NOB species over time was identified as Nitrospira_sp._OLB3, exhibiting an increase of the relative abundance from 0.9 % to 4.3 %. The hydroxyapatite (HAP) granules gradually lost their microbiological function of Anammox bacteria then aged, leading to NOB dominance. Therefore, one "pulse therapy" was introduced and combined with "continuous enhancement" of Anammox sludge supported by sidestream to competitively limit the NOB dynamics. The treatment's effect persisted for around two months. The strategy that returning at least 50 % of the impaired HAP granular sludge to the sidestream for recultivation could fulfill the bottlenecks of mainstream PN/A.


Subject(s)
Ammonium Compounds , Nitrites , Sewage/microbiology , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Oxidation-Reduction , Bacteria , Nitrogen , Durapatite
5.
Bioresour Technol ; 406: 131018, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908763

ABSTRACT

Higher nitrite accumulation, which is challenging to achieve reliably, is always sought to obtain better nitrogen removal performance in traditional partial nitritation-anammox (PN/A) process. This study developed a modified PN/A process by introducing nitrite-oxidizing bacteria and endogenous metabolism. Advanced nitrogen removal performance of 95.5 % was achieved at a low C/N ratio of 2.7 under nitrite accumulation ratio (NAR) fluctuations. Higher nitrate accumulation at lower NAR (70 âˆ¼ 40 %) resulted in superior anammox contribution (60 âˆ¼ 75 %) and nitrogen removal performance (93 âˆ¼ 98 %). This was attributed to the higher nitrogen removal efficiency of the post-anoxic endogenous partial denitrification coupling anammox process, although the PN/A process occurring first possessed a faster anammox rate of 2.0 mg NH4+-N /(g VSS⋅h). The introduction of nitrate allowed more nitrite flow to anammox, promoting a high enrichment of anammox bacteria (Ca. Brocadia, 0.3 % to 2.8 %). This study provides new insights into the practical application of the PN/A process.


Subject(s)
Bioreactors , Nitrites , Nitrogen , Oxidation-Reduction , Nitrites/metabolism , Nitrogen/metabolism , Anaerobiosis , Nitrates/metabolism , Bacteria/metabolism , Denitrification
6.
Electron. j. biotechnol ; 12(3): 13-14, July 2009. ilus, tab
Article in English | LILACS | ID: lil-551891

ABSTRACT

In this work, an anaerobic sequencing batch reactor (ASBR) was operated for 8 months to treat low strength sewage with high suspended organic matter content. Three phases of operation with increasing organic loading rates (OLR) were performed: 0.4 kg COD/m³ x d (phase I), 0 .8 kg COD/m³ x d (phase II) and 1.2 kg COD/m³ x d (phase III). Adequate stability parameters (pH, total alkalinity) were obtained through all three experimental phases. During phases I and II, the removal efficiencies of organic matter (expressed as total chemical oxygen demand (COD) and total suspended solids ranged between 50-60 percent. However, these values decreased to 15-25 percent in phase III. In addition, a non-complex model, including hydrolysis, acidogenesis and methanogenesis, was applied to predict the reactor behavior.


Subject(s)
Animals , Anaerobic Digestion , Bacteria, Anaerobic/isolation & purification , Water Purification , Activated Sludges , Hydrolysis , Models, Theoretical , Suspended Solids/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL