Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 398
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(2): 105607, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159864

ABSTRACT

A mouse model was used to investigate the role of the hyaluronidase, transmembrane protein 2 (TMEM2), on the progression of Graves' orbital (GO) disease. We established a GO mouse model through immunization with a plasmid expressing the thyroid stimulating hormone receptor. Orbital fibroblasts (OFs) were subsequently isolated from both GO and non-GO mice for comprehensive in vitro analyses. The expression of TMEM2 was assessed using qRT-PCR, Western blot and immunohistochemistry in vivo. Disease pathology was evaluated by H&E staining and Masson's trichrome staining in GO mouse tissues. Our investigation revealed a notable reduction in TMEM2 expression in GO mouse orbital tissues. Through overexpression and knockdown assays, we demonstrated that TMEM2 suppresses inflammatory cytokines and reactive oxygen species production. TMEM2 also inhibits the formation of lipid droplets in OFs and the expression of adipogenic factors. Further incorporating Gene Set Enrichment Analysis of relevant GEO datasets and subsequent in vitro cell experiments, robustly confirmed that TMEM2 overexpression was associated with a pronounced upregulation of the JAK/STAT signaling pathway. In vivo, TMEM2 overexpression reduced inflammatory cell infiltration, adipogenesis, and fibrosis in orbital tissues. These findings highlight the varied regulatory role of TMEM2 in GO pathogenesis. Our study reveals that TMEM2 plays a crucial role in mitigating inflammation, suppressing adipogenesis, and reducing fibrosis in GO. TMEM2 has potential as a therapeutic target and biomarker for treating or alleviating GO. These findings advance our understanding of GO pathophysiology and provide opportunities for targeted interventions to modulate TMEM2 for therapeutic purposes.


Subject(s)
Graves Ophthalmopathy , Signal Transduction , Animals , Mice , Adipogenesis , Cells, Cultured , Fibroblasts/metabolism , Fibrosis , Graves Ophthalmopathy/genetics , Graves Ophthalmopathy/metabolism , Mice, Inbred Strains , Reactive Oxygen Species/metabolism
2.
FASEB J ; 38(14): e23733, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38995329

ABSTRACT

High-quality fat (HQF) improves the survival rate of fat and volumetric filling compared to traditional Coleman fat. However, this HQF strategy inevitably leads to a significant amount of unused fat being wasted. "CEFFE" (cell-free fat extract) is an acellular aqueous-phase liquid, rich in bioactive proteins. The remaining fat from preparing HQF can be further processed into CEFFE to promote the survival of HQF. HQF was obtained and the remaining fat was processed into CEFFE, then HQF was transplanted subcutaneously in nude mice. Animal studies showed that CEFFE significantly improved the survival rate of HQF. Histological analysis revealed that CEFFE improved the survival rate of HQF, by enhancing cell proliferation activity, reducing apoptosis, increasing angiogenesis, and improving the inflammatory state. Under simulated anaerobic conditions, CEFFE also improved the viability of HQF. In vitro, studies demonstrated that CEFFE enhanced the survival rate of HQF through multiple mechanisms. Transcriptomic analysis and qPCR showed that CEFFE increased the expression of angiogenesis-related genes in ADSCs while enhancing their proliferation-related gene expression and suppressing the expression of three differentiation-related genes. Moreover, functional experiments demonstrated that CEFFE-induced ADSCs exhibited stronger proliferation and adipogenic differentiation abilities. Tube formation and migration assays revealed that CEFFE promoted tube formation and migration of HUVECs, indicating its inherent pro-angiogenic properties. CEFFE facilitated the development of M0 to M2 macrophages, suggesting its role in improving the inflammatory state. This innovative clinical strategy optimizes HQF transplantation strategy, minimizing fat wastage and enhancing the efficiency of fat utilization.


Subject(s)
Cell Proliferation , Mice, Nude , Animals , Mice , Cell Proliferation/drug effects , Adipose Tissue/metabolism , Adipose Tissue/cytology , Cell Survival/drug effects , Cell Differentiation/drug effects , Humans , Male , Apoptosis/drug effects , Adipocytes/metabolism , Adipocytes/drug effects , Adipocytes/cytology
3.
Exp Cell Res ; 435(1): 113908, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38163565

ABSTRACT

The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.


Subject(s)
Adipogenesis , Arachidonic Acids , Endocannabinoids , Humans , Endocannabinoids/pharmacology , Receptors, Cannabinoid , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Stromal Cells/metabolism
4.
Cell Mol Life Sci ; 81(1): 418, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39368012

ABSTRACT

The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3ß pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.


Subject(s)
Cell Differentiation , Femur Head Necrosis , Mesenchymal Stem Cells , Monoacylglycerol Lipases , Osteogenesis , Animals , Male , Rats , Adipogenesis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/chemically induced , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Signal Transduction/drug effects
5.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35067718

ABSTRACT

Adipogenesis is closely related to various metabolic diseases, such as obesity, type 2 diabetes, cardiovascular diseases and cancer. This cellular process is highly dependent on the expression and sequential activation of a diverse group of transcription factors. Here, we report that ADAR1 (also known as ADAR) could inhibit adipogenesis through binding with Dicer (also known as DICER1), resulting in enhanced production of miR-155-5p, which downregulates the adipogenic early transcription factor C/EBPß. Consequently, the expression levels of late-stage adipogenic transcription factors (C/EBPα and PPARγ) are reduced and adipogenesis is inhibited. More importantly, in vivo studies reveal that overexpression of ADAR1 suppresses white adipose tissue expansion in high fat diet-induced obese mice, leading to improved metabolic phenotypes, such as insulin sensitivity and glucose tolerance.


Subject(s)
Adenosine Deaminase , Adipogenesis , DEAD-box RNA Helicases , MicroRNAs , Obesity , Ribonuclease III , 3T3-L1 Cells , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adipogenesis/genetics , Adipose Tissue , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , PPAR gamma/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism
6.
Biochem Biophys Res Commun ; 735: 150865, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39442449

ABSTRACT

Aberrant adipogenic differentiation is strongly associated with obesity and related metabolic diseases. Elucidating the key factors driving adipogenesis is an effective strategy for identifying novel therapeutic targets for treating metabolic diseases represented by obesity. In this study, transcriptomic techniques were employed to investigate the functional genes that regulate adipogenic differentiation in OP9 cells and 3T3-L1 cells. The findings indicated a notable upregulation of Acsl1 expression throughout the adipogenic differentiation process. Knocking down Acsl1 led to a decrease in the expression of genes associated with adipogenesis and a reduction in triglyceride accumulation. Additionally, Acsl1 overexpression promoted adipocyte differentiation and adipose-specific overexpression of Acsl1 markedly aggravated steatosis induced by a high-fat diet. Mechanistically, Cyp2f2, Dusp23 and Gstm2 are the crucial genes implicated in Acsl1-induced adipogenic differentiation. The findings of this study indicate that Acsl1 promotes adipogenesis and could serve as a potential therapeutic target for treating obesity and related metabolic disorders.

7.
Biochem Biophys Res Commun ; 739: 150570, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181069

ABSTRACT

BACKGROUND: The regulatory mechanisms of RNA methylation during the processes of osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) have yet to be fully understood. The objective of our study was to analyze and validate the contribution of RNA methylation regulators to the mechanisms underlying the osteogenic and adipogenic differentiation of rat BMSCs. METHODS: We downloaded the GSE186026 from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened using the DESeq2 package in R software (version 3.6.3). A total of 50 RNA methylation genes obtained from literature review and summary were intersected with the previous DEGs to obtain RNA methylation genes, which have different expressions (RM-DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to reveal the functional enrichment. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate RM-DEGs. Protein-protein interaction network (PPI) analysis and visual analysis were performed using STRING and Cytoscape. RM-DEGs regulatory network was constructed to analyze the top 10 hub genes. The relationship between RM-DEGs, some enriched GO and pathways was also been analyzed. The miRNAs and RM-DEGs regulatory networks were established by using miRWalk and TargetScan. RESULTS: As part of our research, we detected varying levels of expression for m6A regulators Mettl3 and Rbm15, as well as m7G regulators Mettl1 and Wdr4, in relation to osteogenic differentiation, along with m6A regulator Fmr1 in adipogenic differentiation. The protein-protein interaction (PPI) networks were constructed for 49 differentially expressed genes (DEGs) related to RNA methylation during the process of osteogenic differentiation, and 13 DEGs for adipogenic differentiation. Moreover, top10 hub genes were calculated. In osteogenic differentiation, Mettl3 regulated the Wnt pathway and Hippo pathway by regulating Smad3, Rbm15 regulated the Notch pathway by Notch1, Mettl1 regulated the PI3K-Akt pathway by Gnb4. In adipogenic differentiation, Fmr1 regulated the PI3K-Akt pathway by Egfr. M6A methylation sites of Smad3, Notch1 and Gnb4 were predicted, and the results showed that all three genes were possibly methylated by m6A, and more than 9 sites per gene were possibly methylated. Finally, we constructed the regulatory networks of Mettl3, Rbm15, Mettl1, and Wdr4 and 109 miRNAs in osteogenic differentiation, Fmr1 and 118 miRNAs in adipogenic differentiation. CONCLUSIONS: Mettl3(m6A), Rbm15(m6A), Wdr4 and Mettl1(m7G) were differentially expressed in osteogenic differentiation, while Fmr1(m6A) was differentially expressed in adipogenic differentiation. These findings offered potential candidates for further research on the involvement of RNA methylation in the osteogenic and adipogenic differentiation of BMSCs.

8.
Small ; 20(10): e2306400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880901

ABSTRACT

Chirality-directed stem-cell-fate determination involves coordinated transcriptional and metabolomics programming that is only partially understood. Here, using high-throughput transcriptional-metabolic profiling and pipeline network analysis, the molecular architecture of chirality-guided mesenchymal stem cell lineage diversification is revealed. A total of 4769 genes and 250 metabolites are identified that are significantly biased by the biomimetic chiral extracellular microenvironment (ECM). Chirality-dependent energetic metabolism analysis has revealed that glycolysis is preferred during left-handed ECM-facilitated osteogenic differentiation, whereas oxidative phosphorylation is favored during right-handed ECM-promoted adipogenic differentiation. Stereo-specificity in the global metabolite landscape is also demonstrated, in which amino acids are enriched in left-handed ECM, while ether lipids and nucleotides are enriched in right-handed ECM. Furthermore, chirality-ordered transcriptomic-metabolic regulatory networks are established, which address the role of positive feedback loops between key genes and central metabolites in driving lineage diversification. The highly integrated genotype-phenotype picture of stereochemical selectivity would provide the fundamental principle of regenerative material design.


Subject(s)
Multiomics , Osteogenesis , Cell Lineage/genetics , Cell Differentiation/genetics , Metabolomics
9.
Mol Cell Biochem ; 479(3): 643-652, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37148505

ABSTRACT

The adipose-derived stem cells (ASCs) are a valuable resource for regenerative medicine and essential materials for research in fat deposition. However, the isolation procedure of ASCs has not been standardized and needs to be harmonized; differences in proliferation and adipogenic differentiation of ASCs obtained from different fat depots have not been well characterized. In the present study, we compared the efficiency of ASCs isolation by enzymatic treatment and explant culture methods and the proliferation ability and adipogenic differentiation potential of ASCs isolated from subcutaneous and visceral fat depots. The explant culture method was simple and with no need for expensive enzymes while the enzymatic treatment method was complex, time consuming and costly. By the explant culture method, a larger number of ASCs were isolated from subcutaneous and visceral fat depots. By contrast, fewer ASCs were obtained by the enzymatic treatment method, especially from visceral adipose. ASCs isolated by the explant culture method performed well in cell proliferation and adipogenic differentiation, though they were slightly lower than those by the enzymatic treatment method. ASCs isolated from visceral depot demonstrated higher proliferation ability and adipogenic differentiation potential. In total, the explant culture method is simpler, more efficient, and lower cost than the enzymatic treatment method for ASCs isolation; compared with visceral adipose, subcutaneous adipose is easier to isolate ASCs; however, the visceral ASCs are superior to subcutaneous ASCs in proliferation and adipogenic differentiation.


Subject(s)
Adipogenesis , Subcutaneous Fat , Animals , Cattle , Cell Differentiation , Stem Cells , Cell Proliferation , Adipose Tissue , Cells, Cultured
10.
Mol Biol Rep ; 51(1): 785, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951450

ABSTRACT

BACKGROUND: Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS: KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS: Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Cell Differentiation , Flavones , Mesenchymal Stem Cells , Plant Extracts , Signal Transduction , Zingiberaceae , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , AMP-Activated Protein Kinases/metabolism , Flavones/pharmacology , Cell Differentiation/drug effects , Signal Transduction/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured
11.
Int J Med Sci ; 21(13): 2480-2493, 2024.
Article in English | MEDLINE | ID: mdl-39439458

ABSTRACT

Background: Adipocytes play a crucial role in tissue regeneration, contributing to the restoration of damaged areas and modulating the inflammatory milieu. The modulation of gene expression through chemically modified PPARγ mRNA (PPARγ-modRNA) introduces a sophisticated approach to precisely control adipogenic processes. This study aims to explore the adipogenic potential of the PPARγ-modRNA in 3T3-L1 preadipocytes and its role in wound healing. Materials and Methods: We transfected 3T3-L1 preadipocytes with PPARγ-modRNA to investigate adipogenic differentiation and cellular proliferation in vitro. In vivo, we employed a murine full-thickness skin defect model and compared the effects of modRNA-mediated PPARγ overexpression with control groups. Additionally, we conducted RNA sequencing on luciferase-modified mRNA (LUC) and PPARγ-modRNA-transfected cells (PPAR) for a comprehensive understanding of molecular mechanisms. Results: PPARγ-modRNA significantly enhanced adipogenesis and proliferation in 3T3-L1 preadipocytes in vitro. The injection of PPARγ-modified mRNA led to accelerated wound healing compared to the control groups in vivo. RNA sequencing revealed upregulation of adipogenesis-related genes in the PPAR group, notably associated with the TNF signaling pathway. Subsequently, the KEGG analysis indicated that modRNA-mediated PPARγ overexpression effectively promoted adipogenesis while inhibiting TNF-α-mediated inflammation and cellular apoptosis. Conclusions: This study demonstrates the innovative use of PPARγ-modRNA to induce adipogenesis and expedite wound healing. The nuclear expression of PPARγ through modRNA technology signifies a notable advancement, with implications for future therapeutic strategies targeting adipogenic processes and the inhibition of inflammation in the context of wound healing.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Proliferation , PPAR gamma , RNA, Messenger , Wound Healing , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Adipogenesis/genetics , Wound Healing/genetics , Adipocytes/metabolism , Adipocytes/cytology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Proliferation/genetics , Cell Differentiation/genetics , Humans , Disease Models, Animal , Skin/pathology , Skin/metabolism , Male
12.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940455

ABSTRACT

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Subject(s)
Adipogenesis , Cell Differentiation , Periodontal Ligament , Stem Cells , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Stem Cells/cytology , Stem Cells/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Cell Proliferation , Cell Count , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics
13.
J Nanobiotechnology ; 22(1): 648, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39438865

ABSTRACT

BACKGROUND: By interacting with bone marrow mesenchymal stem cells (BMSCs) and regulating their function through exosomes, bone macrophages play crucial roles in various bone-related diseases. Research has highlighted a notable increase in the number of M1 macrophages in glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Nevertheless, the intricate crosstalk between M1 macrophages and BMSCs in the glucocorticoid-stimulated environment has not been fully elucidated, and the underlying regulatory mechanisms involved in the occurrence of GA-ONFH remain unclear. METHODS: We employed in vivo mouse models and clinical samples from GA-ONFH patients to investigate the interactions between M1 macrophages and BMSCs. Immunofluorescence staining was used to assess the colocalization of M1 macrophages and BMSCs. Flow cytometry and transcriptomic analysis were performed to evaluate the impact of exosomes derived from normal (n-M1) and glucocorticoid-stimulated M1 macrophages (GC-M1) on BMSC differentiation. Additionally, miR-1a-3p expression was altered in vitro and in vivo to assess its role in regulating adipogenic differentiation. RESULTS: In vivo, the colocalization of M1 macrophages and BMSCs was observed, and an increase in M1 macrophage numbers and a decrease in bone repair capabilities were further confirmed in both GA-ONFH patients and mouse models. Both n-M1 and GC-M1 were identified as contributors to the inhibition of osteogenic differentiation in BMSCs to a certain extent via exosome secretion. More importantly, exosomes derived from GC-M1 macrophages exhibited a heightened capacity to regulate the adipogenic differentiation of BMSCs, which was mediated by miR-1a-3p. In vivo and in vitro, miR-1a-3p promoted the adipogenic differentiation of BMSCs by targeting Cebpz and played an important role in the onset and progression of GA-ONFH. CONCLUSION: We demonstrated that exosomes derived from GC-M1 macrophages disrupt the balance between osteogenic and adipogenic differentiation in BMSCs, contributing to the pathogenesis of GA-ONFH. Inhibiting miR-1a-3p expression, both in vitro and in vivo, significantly mitigates the preferential adipogenic differentiation of BMSCs, thus slowing the progression of GA-ONFH. These findings provide new insights into the regulatory mechanisms underlying GA-ONFH and highlight potential therapeutic targets for intervention.


Subject(s)
Adipogenesis , Cell Differentiation , Exosomes , Femur Head Necrosis , Glucocorticoids , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Glucocorticoids/pharmacology , Adipogenesis/drug effects , Humans , Cell Differentiation/drug effects , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Male , Mice, Inbred C57BL , Osteogenesis/drug effects , Disease Models, Animal , Female
14.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668682

ABSTRACT

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Subject(s)
Adipogenesis , Osteogenesis , Tensins , Humans , Actins , Adipogenesis/genetics , Cell Differentiation , Osteogenesis/genetics , Tensins/genetics
15.
Aesthetic Plast Surg ; 48(13): 2536-2544, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38538770

ABSTRACT

Type IV collagen is a major component of the extracellular matrix in adipose tissue. It is secreted during the lipogenic differentiation of mesenchymal stem cells, but its direct impact and mechanism on the differentiation of adipose-derived stem cells (ASCs) into lipids are unclear. In this study, ASCs were obtained from human liposuction samples and cultured. Lipogenic induction of ASCs was achieved using lipogenic induction medium. Immunofluorescence analysis revealed differential expression of type IV collagen during the early and late stages of adipogenic induction, displaying a distinct morphological encapsulation of ASCs. Silencing of type IV collagen using siRNA resulted in a significant decrease in adipogenic capacity, as indicated by reduced lipid droplet formation and downregulation of adipogenic-related gene transcription. Conversely, supplementation of the culture medium with synthetic type IV collagen demonstrated enhanced adipogenic induction efficiency, accompanied by upregulation of YAP/TAZ protein expression and its downstream target gene transcription. Furthermore, inhibition of the YAP/TAZ pathway using the inhibitor Blebbistatin attenuated the functionality of type IV collagen, leading to decreased lipid droplet formation and downregulation of adipocyte maturation-related gene expression. These findings highlight the crucial role of type IV collagen in promoting adipogenic differentiation of ASCs and suggest its involvement in the YAP/TAZ-mediated Hippo pathway.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipogenesis , Cell Differentiation , Collagen Type IV , Humans , Adipogenesis/physiology , Adipogenesis/genetics , Collagen Type IV/genetics , Collagen Type IV/metabolism , Cells, Cultured , Adipose Tissue/cytology , Adipocytes , Female , Stem Cells , Adult
16.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612741

ABSTRACT

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.


Subject(s)
Adiposity , Microphysiological Systems , Animals , Mice , Obesity , Organoids , Adipocytes
17.
J Cell Physiol ; 238(11): 2586-2599, 2023 11.
Article in English | MEDLINE | ID: mdl-37795636

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a complex disease characterized by three-dimensional structural deformities of the spine. Its pathogenesis is associated with osteopenia. Bone-marrow-derived mesenchymal stem cells (BMSCs) play an important role in bone metabolism. We detected 1919 differentially expressed mRNAs and 744 differentially expressed lncRNAs in BMSCs from seven patients with AIS and five patients without AIS via high-throughput sequencing. Multiple analyses identified bone morphogenetic protein-6 (BMP6) as a hub gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS. BMP6 expression was found to be decreased in AIS and its knockdown in human BMSCs significantly altered the degree of osteogenic differentiation. Additionally, CAP1-217 has been shown to be a potential upstream regulatory molecule of BMP6. We showed that CAP1-217 knockdown downregulated the expression of BMP6 and the osteogenic differentiation of BMSCs. Simultaneously, knockout of BMP6 in zebrafish embryos significantly increased the deformity rate. The findings of this study suggest that BMP6 is a key gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS via the CAP1-217/BMP6/RUNX2 axis.


Subject(s)
Bone Diseases, Metabolic , Scoliosis , Humans , Adolescent , Animals , Scoliosis/genetics , Scoliosis/pathology , Osteogenesis/genetics , Zebrafish/genetics , Spine/metabolism , Cell Differentiation/genetics , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 6/genetics
18.
Biochem Biophys Res Commun ; 653: 126-132, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36868076

ABSTRACT

Obesity is commonly associated with excessive adipogenesis, a process by which preadipocytes undergo differentiation into mature adipocytes; however, the mechanisms underlying adipogenesis are not completely understood. Potassium channel tetramerization domain-containing 17 (Kctd17) belongs to the Kctd superfamily and act as a substrate adaptor of the Cullin 3-RING E3 ubiquitin ligase, which is involved in a wide variety of cell functions. However, its function in the adipose tissue remains largely unknown. Here, we found that Kctd17 expression levels were increased in white adipose tissue, especially in adipocytes, in obese mice compared to lean control mice. Gain or loss of function of Kctd17 in preadipocytes inhibited or promoted adipogenesis, respectively. Furthermore, we found that Kctd17 bound to C/EBP homologous protein (Chop) to target it for ubiquitin-mediated degradation, and this process was likely associated with increased adipogenesis. In conclusion, these data suggest that Kctd17 plays an important role in adipogenesis and can be a novel therapeutic target for obesity.


Subject(s)
Adipogenesis , Adipose Tissue , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/physiology , Adipose Tissue/metabolism , Cell Differentiation , Obesity/genetics , Obesity/metabolism
19.
Stem Cells ; 40(7): 669-677, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35416252

ABSTRACT

For regenerative medicine, directing stem cell fate is one of the key aims. Human mesenchymal stem cells (hMSCs) are versatile adult stem cells that have been proposed for several clinical applications, making directing their fate of utmost importance. For most clinical applications, their differentiation toward the adipogenic lineage is an undesired outcome. Understanding the mechanisms that regulate hMSC commitment toward the adipogenic lineage might help open up new avenues for fine-tuning implanted hMSCs for regenerative medicine applications. We know that cadherin-11 is required for hMSC commitment to the adipogenic lineage; therefore, we sought to investigate the mechanisms through which cadherin-11 regulates adipogenic differentiation. We observed that hMSCs lacking cadherin-11 had decreased expression of type VI collagen and increased expression of fibronectin. We provide evidence of increased transforming growth factor beta 1 and the subsequent translocation of phosphorylated SMAD2/3 into the nucleus by cells that lack cadherin-11, which could be attributed to the changes in extracellular matrix composition. Taken together, our study implicates cadherin-11 in regulating extracellular matrix production and thereby helping improve cell- and material-based regenerative medicine approaches.


Subject(s)
Mesenchymal Stem Cells , Adult , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Mesenchymal Stem Cells/metabolism
20.
Environ Sci Technol ; 57(30): 10998-11008, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37481753

ABSTRACT

3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the most commonly used antioxidants in foodstuffs, has been identified as an environmental endocrine disruptor (EED) with obesogenic activity. Given the increasing concern on EED-caused dysfunction in lipid metabolism, whether 3-BHA could influence the development of brown adipocytes is worthy of being explored. In this study, the effect of 3-BHA on the differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) into brown adipocytes was investigated. Exposure to 3-BHA promoted lipogenesis of the differentiated cells, as evidenced by the increased intracellular lipid accumulation and elevated expressions of adipogenic biomarkers, including peroxisome proliferator-activated receptor γ (PPARγ), Perilipin, Adiponectin, and fatty acid binding protein 4 (FABP4). Surprisingly, the thermogenic capacity of the differentiated cells was compromised as a result of 3-BHA exposure, because neither intracellular mitochondrial contents nor expressions of thermogenic biomarkers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cell-death-inducing DNA fragmentation factor α subunit-like effector A (CIDEA), and PR domain containing 16 (PRDM16), were increased by this chemical. The underlying molecular mechanism exploration revealed that, in contrast to p38 MAPK, 3-BHA stimulation induced phosphorylation of Smad1/5/8 in an exposure time-dependent manner, suggesting that this chemical-triggered Smad signaling was responsible for the shift of C3H10T1/2 MSC differentiation from a brown to white-like phenotype. The finding herein, for the first time, revealed the perturbation of 3-BHA in the development of brown adipocytes, uncovering new knowledge about the obesogenic potential of this emerging chemical of concern.

SELECTION OF CITATIONS
SEARCH DETAIL