Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.676
Filter
Add more filters

Publication year range
1.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569543

ABSTRACT

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Subject(s)
Bacteria , Cardiovascular Diseases , Cholesterol , Gastrointestinal Microbiome , Humans , Bacteria/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Feces/chemistry , Longitudinal Studies , Metabolome , Metabolomics , RNA, Ribosomal, 16S/metabolism
2.
Cell ; 185(16): 2853-2878, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931019

ABSTRACT

The surprising discovery that the diatomic gas nitric oxide (NO) is generated by mammalian cells and serves to regulate a multitude of physiological processes has continued to fascinate biologists for almost four decades. The biochemistry of NO is complex, and novel insights into the control of NO biosynthesis and mechanisms of signal transduction are continuously emerging. NO is a key regulator of cardiovascular function, metabolism, neurotransmission, immunity, and more, and aberrant NO signaling is a central feature of many major disorders including cardiovascular disease, diabetes, and cancer. Here, we discuss the basics of NO biology emphasizing recent advances in the field including novel means of increasing NO bioactivity with therapeutic and nutritional implications.


Subject(s)
Cardiovascular Diseases , Nitrites , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Physiological Phenomena , Humans , Mammals/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Nitrites/therapeutic use , Signal Transduction
3.
Cell ; 185(10): 1619-1622, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35561661

ABSTRACT

Progress in studying sex as a biological variable (SABV) is slow, and the influence of gendered effects of the social environment on biology is largely unknown. Yet incorporating these concepts into basic science research will enhance our understanding of human health and disease. We provide steps to move this process forward.


Subject(s)
Biomedical Research , Female , Humans , Male , Precision Medicine , Sex Characteristics , Sex Factors , Women's Health
4.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35489334

ABSTRACT

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Subject(s)
Cannabis , Cardiovascular Diseases , Hallucinogens , Analgesics , Animals , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Endothelial Cells , Genistein/pharmacology , Genistein/therapeutic use , Inflammation/drug therapy , Mice , Receptor, Cannabinoid, CB1 , Receptors, Cannabinoid
5.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142679

ABSTRACT

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Subject(s)
Cardiovascular Diseases/blood , Gastrointestinal Microbiome/genetics , Glutamine/analogs & derivatives , Thrombosis/metabolism , Animals , Arteries/injuries , Arteries/metabolism , Arteries/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blood Platelets/metabolism , Blood Platelets/microbiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/pathology , Death, Sudden, Cardiac/pathology , Glutamine/blood , Glutamine/genetics , Humans , Male , Metabolome/genetics , Metabolomics/methods , Mice , Myocardial Infarction/blood , Myocardial Infarction/microbiology , Platelet Activation/genetics , Receptors, Adrenergic, alpha/blood , Receptors, Adrenergic, alpha/genetics , Receptors, Adrenergic, beta/blood , Receptors, Adrenergic, beta/genetics , Risk Factors , Stroke/blood , Stroke/microbiology , Stroke/pathology , Thrombosis/genetics , Thrombosis/microbiology , Thrombosis/pathology
6.
Cell ; 175(7): 1796-1810.e20, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30528432

ABSTRACT

The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.


Subject(s)
Chromosomes, Human, Pair 9 , Coronary Artery Disease , Gene Editing , Haplotypes , Induced Pluripotent Stem Cells , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Chromosomes, Human, Pair 9/genetics , Chromosomes, Human, Pair 9/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Female , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic
7.
Cell ; 168(5): 867-877.e13, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235198

ABSTRACT

The adenosine A1 receptor (A1-AR) is a G-protein-coupled receptor that plays a vital role in cardiac, renal, and neuronal processes but remains poorly targeted by current drugs. We determined a 3.2 Å crystal structure of the A1-AR bound to the selective covalent antagonist, DU172, and identified striking differences to the previously solved adenosine A2A receptor (A2A-AR) structure. Mutational and computational analysis of A1-AR revealed a distinct conformation of the second extracellular loop and a wider extracellular cavity with a secondary binding pocket that can accommodate orthosteric and allosteric ligands. We propose that conformational differences in these regions, rather than amino-acid divergence, underlie drug selectivity between these adenosine receptor subtypes. Our findings provide a molecular basis for AR subtype selectivity with implications for understanding the mechanisms governing allosteric modulation of these receptors, allowing the design of more selective agents for the treatment of ischemia-reperfusion injury, renal pathologies, and neuropathic pain.


Subject(s)
Receptor, Adenosine A1/chemistry , Adenosine A1 Receptor Agonists/chemistry , Adenosine A1 Receptor Antagonists/chemistry , Allosteric Site , Crystallography, X-Ray , Drug Design , Humans , Receptor, Adenosine A1/genetics , Receptor, Adenosine A2A/chemistry
8.
Physiol Rev ; 104(2): 765-834, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37971403

ABSTRACT

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.


Subject(s)
Cardiovascular Diseases , Diethylstilbestrol/analogs & derivatives , Phosphoric Diester Hydrolases , Humans , Phosphodiesterase Inhibitors/therapeutic use , Cyclic AMP , Cyclic GMP , Protein Isoforms
9.
Physiol Rev ; 103(3): 2039-2055, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36634218

ABSTRACT

Genome-wide association studies (GWAS) aim to identify common genetic variants that are associated with traits and diseases. Since 2005, more than 5,000 GWAS have been published for almost as many traits. These studies have offered insights into the loci and genes underlying phenotypic traits, have highlighted genetic correlations across traits and diseases, and are beginning to demonstrate clinical utility by identifying individuals at increased risk for common diseases. GWAS have been widely utilized across cardiovascular diseases and associated phenotypic traits, with insights facilitated by multicenter registry studies and large biobank data sets. In this review, we describe how GWAS have informed the genetic architecture of cardiovascular diseases and the insights they have provided into disease pathophysiology, using archetypal conditions for both common and rare diseases. We also describe how biobank data sets can complement disease-specific studies, particularly for rarer cardiovascular diseases, and how findings from GWAS have the potential to impact on clinical care. Finally, we discuss the outstanding challenges facing research in this field and how they can be addressed.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Humans , Cardiovascular Diseases/genetics , Phenotype , Genetic Predisposition to Disease , Multicenter Studies as Topic
10.
Physiol Rev ; 103(1): 391-432, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35953269

ABSTRACT

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.


Subject(s)
Edema, Cardiac , Heart Diseases , Lymphatic Vessels , Animals , Disease Models, Animal , Edema, Cardiac/physiopathology , Heart Diseases/physiopathology , Lymphatic Vessels/physiopathology
11.
Annu Rev Genet ; 55: 135-159, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34416119

ABSTRACT

Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.


Subject(s)
Aging , Longevity , Aging/genetics , Animals , Longevity/genetics , Vertebrates/genetics
12.
Physiol Rev ; 101(4): 1745-1807, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33949876

ABSTRACT

The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed "obesity cardiomyopathy," which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/pathology , Obesity/complications , COVID-19/complications , COVID-19/mortality , Cardiomyopathies/mortality , Humans , Obesity/etiology , Obesity/genetics , SARS-CoV-2
13.
Annu Rev Physiol ; 86: 49-70, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37788489

ABSTRACT

Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).


Subject(s)
Hypotension , Receptors, Mineralocorticoid , Humans , Receptors, Mineralocorticoid/physiology , Ligands , Endothelium, Vascular , Inflammation
14.
Annu Rev Physiol ; 86: 175-198, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37931169

ABSTRACT

The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , Adipose Tissue/physiology , Myocardium/metabolism , Energy Metabolism
15.
Annu Rev Pharmacol Toxicol ; 64: 135-157, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37506332

ABSTRACT

Lipoprotein(a) [Lp(a)] is a molecule bound to apolipoprotein(a) with some similarity to low-density lipoprotein cholesterol (LDL-C), which has been found to be a risk factor for cardiovascular disease (CVD). Lp(a) appears to induce inflammation, atherogenesis, and thrombosis. Approximately 20% of the world's population has increased Lp(a) levels, determined predominantly by genetics. Current clinical practices for the management of dyslipidemia are ineffective in lowering Lp(a) levels. Evolving RNA-based therapeutics, such as the antisense oligonucleotide pelacarsen and small interfering RNA olpasiran, have shown promising results in reducing Lp(a) levels. Phase III pivotal cardiovascular outcome trials [Lp(a)HORIZON and OCEAN(a)] are ongoing to evaluate their efficacy in secondary prevention of major cardiovascular events in patients with elevated Lp(a). The future of cardiovascular residual risk reduction may transition to a personalized approach where further lowering of either LDL-C, triglycerides, or Lp(a) is selected after high-intensity statin therapy based on the individual risk profile and preferences of each patient.


Subject(s)
Cardiovascular Diseases , Humans , Cholesterol, LDL/metabolism , Cholesterol, LDL/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Risk Factors , Lipoprotein(a)/genetics , Lipoprotein(a)/metabolism , Lipoprotein(a)/therapeutic use , Heart Disease Risk Factors
16.
Annu Rev Genomics Hum Genet ; 25(1): 329-351, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190914

ABSTRACT

Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Humans , Clonal Hematopoiesis/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/metabolism , Mutation , Hematopoietic Stem Cells/metabolism , Epigenesis, Genetic , Risk Factors , Animals
17.
Pharmacol Rev ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39406506

ABSTRACT

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. The two existing isoforms Arg1 and Arg2 show different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell-type-specific, species-specific, and profoundly different in mice and humans. The main differences were found in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of L-ornithine, polyamine, and proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginase, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. Significance Statement The review emphasizes the need for further research to deepen our understanding of the regulation of Arg1 and Arg 2 in different cell types under consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This could lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infection diseases and cancer.

18.
Semin Cell Dev Biol ; 156: 190-200, 2024 03 15.
Article | MEDLINE | ID: mdl-36641366

ABSTRACT

The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.


Subject(s)
Clinical Medicine , Heart Diseases , Humans , Vagus Nerve/physiology , Heart , Heart Rate/physiology
19.
Hum Mol Genet ; 33(14): 1262-1272, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38676403

ABSTRACT

BACKGROUND: Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS: We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS: We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS: Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.


Subject(s)
Genetic Predisposition to Disease , Heart Failure , Leukocytes , Telomere , Humans , Heart Failure/genetics , Heart Failure/epidemiology , Female , Leukocytes/metabolism , Male , Middle Aged , Telomere/genetics , Chronic Disease , Aged , Prospective Studies , Telomere Homeostasis/genetics , Risk Factors , Polymorphism, Single Nucleotide , Adult , Multifactorial Inheritance/genetics , Genome-Wide Association Study , White People/genetics , European People
20.
Annu Rev Pharmacol Toxicol ; 63: 249-272, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-35973713

ABSTRACT

CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Humans , Cardiovascular Diseases/drug therapy , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Arrhythmias, Cardiac , Cardiovascular System/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL