Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 23(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36617121

ABSTRACT

Self-collision detection is fundamental to the safe operation of multi-manipulator systems, especially when cooperating in highly dynamic working environments. Existing methods still face the problem that detection efficiency and accuracy cannot be achieved at the same time. In this paper, we introduce artificial intelligence technology into the control system. Based on the Gilbert-Johnson-Keerthi (GJK) algorithm, we generated a dataset and trained a deep neural network (DLNet) to improve the detection efficiency. By combining DLNet and the GJK algorithm, we propose a two-level self-collision detection algorithm (DLGJK algorithm) to solve real-time self-collision detection problems in a dual-manipulator system with fast-continuous and high-precision properties. First, the proposed algorithm uses DLNet to determine whether the current working state of the system has a risk of self-collision; since most of the working states in a system workspace do not have a self-collision risk, DLNet can effectively reduce the number of unnecessary detections and improve the detection efficiency. Then, for the working states with a risk of self-collision, we modeled precise colliders and applied the GJK algorithm for fine self-collision detection, which achieved detection accuracy. The experimental results showed that compared to that with the global use of the GJK algorithm for self-collision detection, the DLGJK algorithm can reduce the time expectation of a single detection in a system workspace by 97.7%. In the path planning of the manipulators, it could effectively reduce the number of unnecessary detections, improve the detection efficiency, and reduce system overhead. The proposed algorithm also has good scalability for a multi-manipulator system that can be split into dual-manipulator systems.


Subject(s)
Artificial Intelligence , Deep Learning , Algorithms , Neural Networks, Computer , Technology
2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765821

ABSTRACT

Intelligent manufacturing requires robots to adapt to increasingly complex tasks, and dual-arm cooperative operation can provide a more flexible and effective solution. Motion planning serves as a crucial foundation for dual-arm cooperative operation. The rapidly exploring random tree (RRT) algorithm based on random sampling has been widely used in high-dimensional manipulator path planning due to its probability completeness, handling of high-dimensional problems, scalability, and faster exploration speed compared with other planning methods. As a variant of RRT, the RRT*Smart algorithm introduces asymptotic optimality, improved sampling techniques, and better path optimization. However, existing research does not adequately address the cooperative motion planning requirements for dual manipulator arms in terms of sampling methods, path optimization, and dynamic adaptability. It also cannot handle dual-manipulator collaborative motion planning in dynamic scenarios. Therefore, in this paper, a novel motion planner named RRT*Smart-AD is proposed to ensure that the dual-arm robot satisfies obstacle avoidance constraints and dynamic characteristics in dynamic environments. This planner is capable of generating smooth motion trajectories that comply with differential constraints and physical collision constraints for a dual-arm robot. The proposed method includes several key components. First, a dynamic A* cost function sampling method, combined with an intelligent beacon sampling method, is introduced for sampling. A path-pruning strategy is employed to improve the computational efficiency. Strategies for dynamic region path repair and regrowth are also proposed to enhance adaptability in dynamic scenarios. Additionally, practical constraints such as maximum velocity, maximum acceleration, and collision constraints in robotic arm applications are analyzed. Particle swarm optimization (PSO) is utilized to optimize the motion trajectories by optimizing the parameters of quintic non-uniform rational B-splines (NURBSs). Static and dynamic simulation experiments verified that the RRT*Smart-AD algorithm for cooperative dynamic path planning of dual robotic arms outperformed biased RRT* and RRT*Smart. This method not only holds significant practical engineering significance for obstacle avoidance in dual-arm manipulators in intelligent factories but also provides a theoretical reference value for the path planning of other types of robots.

3.
Sensors (Basel) ; 23(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299899

ABSTRACT

The search efficiency of a rapidly exploring random tree (RRT) can be improved by introducing a high-probability goal bias strategy. In the case of multiple complex obstacles, the high-probability goal bias strategy with a fixed step size will fall into a local optimum, which reduces search efficiency. Herein, a bidirectional potential field probabilistic step size rapidly exploring random tree (BPFPS-RRT) was proposed for the path planning of a dual manipulator by introducing a search strategy of a step size with a target angle and random value. The artificial potential field method was introduced, combining the search features with the bidirectional goal bias and the concept of greedy path optimization. According to simulations, taking the main manipulator as an example, compared with goal bias RRT, variable step size RRT, and goal bias bidirectional RRT, the proposed algorithm reduces the search time by 23.53%, 15.45%, and 43.78% and decreases the path length by 19.35%, 18.83%, and 21.38%, respectively. Moreover, taking the slave manipulator as another example, the proposed algorithm reduces the search time by 6.71%, 1.49%, and 46.88% and decreases the path length by 19.88%, 19.39%, and 20.83%, respectively. The proposed algorithm can be adopted to effectively achieve path planning for the dual manipulator.

4.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408116

ABSTRACT

The case of dual manipulators with shared workspace, asynchronous manufacturing tasks, and independent objects is named a dual manipulator cooperative manufacturing system, which requires collision-free path planning as a vital issue in terms of safety and efficiency. This paper combines the mathematical modeling method with the time sampling method in the classification of robot path-planning algorithms. Through this attempt we can achieve an optimal local search path during each sampling period interval. Our strategy is to build the corresponding non-linear optimization functions set based on the motion characteristics of the dual manipulator system. In this way, the path-planning problem can be turned into a purely mathematical problem of solving the non-linear optimization programming equations set. The spatial geometric analysis is used to linearize the predicted dual-manipulator minimum distance equation, thus linearizing the non-linear optimization equations set. Finally, this system of linear optimization equations will be mapped directly into a virtual Euclidean space and then solved intuitively using the spatial geometry theory. By simulation and comparing with the previous strategies, we find that the planning results of the newly proposed planning strategy are smoother and have shorter deviations as well as a higher algorithmic efficiency in terms of spatial geometric properties.

5.
Neural Netw ; 169: 778-792, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000180

ABSTRACT

With the development of artificial intelligence, robots are widely used in various fields, grasping detection has been the focus of intelligent robot research. A dual manipulator grasping detection model based on Markov decision process is proposed to realize the stable grasping with complex multiple objects in this paper. Based on the principle of Markov decision process, the cross entropy convolutional neural network and full convolutional neural network are used to parameterize the grasping detection model of dual manipulators which are two-finger manipulator and vacuum sucker manipulator for multi-objective unknown objects. The data set generated in the simulated environment is used to train the two grasping detection networks. By comparing the grasping quality of the detection network output the best grasping by the two grasping methods, the network with better detection effect corresponding to the two grasping methods of two-finger and vacuum sucker is determined, and the dual manipulator grasping detection model is constructed in this paper. Robot grasping experiments are carried out, and the experimental results show that the proposed dual manipulator grasping detection method achieves 90.6% success rate, which is much higher than the other groups of experiments. The feasibility and superiority of the dual manipulator grasping detection method based on Markov decision process are verified.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Fingers , Upper Extremity , Hand Strength
SELECTION OF CITATIONS
SEARCH DETAIL