Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Am J Physiol Cell Physiol ; 318(6): C1200-C1213, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32374676

ABSTRACT

The liver is the central metabolic hub for carbohydrate, lipid, and protein metabolism. It is composed of four major types of cells, including hepatocytes, endothelial cells (ECs), Kupffer cells, and stellate cells. Hepatic ECs are highly heterogeneous in both mice and humans, representing the second largest population of cells in liver. The majority of them line hepatic sinusoids known as liver sinusoidal ECs (LSECs). The structure and biology of LSECs and their roles in physiology and liver disease were reviewed recently. Here, we do not give a comprehensive review of LSEC structure, function, or pathophysiology. Instead, we focus on the recent progress in LSEC research and other hepatic ECs in physiology and nonalcoholic fatty liver disease and other hepatic fibrosis-related conditions. We discuss several current areas of interest, including capillarization, scavenger function, autophagy, cellular senescence, paracrine effects, and mechanotransduction. In addition, we summarize the strengths and weaknesses of evidence for the potential role of endothelial-to-mesenchymal transition in liver fibrosis.


Subject(s)
Capillaries/metabolism , Endothelial Cells/metabolism , Liver Cirrhosis/metabolism , Liver/blood supply , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Autophagy , Capillaries/pathology , Cell Differentiation , Cell Proliferation , Cellular Senescence , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Humans , Inflammation Mediators/metabolism , Liver Cirrhosis/pathology , Mechanotransduction, Cellular , Non-alcoholic Fatty Liver Disease/pathology , Paracrine Communication , Reactive Oxygen Species/metabolism
2.
Redox Biol ; 40: 101863, 2021 04.
Article in English | MEDLINE | ID: mdl-33508742

ABSTRACT

Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated ß-galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in diet-induced obese mice. Furthermore, Meg3 expression is elevated in human nonalcoholic fatty livers and nonalcoholic steatohepatitis livers, which positively correlates with the expression of CDKN2A encoding p16, an important hallmark of cellular senescence. Meg3 knockdown potentiates obesity-induced insulin resistance and impairs glucose homeostasis. Insulin signaling is reduced by Meg3 knockdown in the liver and, to a lesser extent, in the skeletal muscle, but not in the visceral fat of obese mice. We found that the attenuation of cellular senescence of hepatic endothelium by ablating p53 expression in vascular endothelium can restore impaired glucose homeostasis and insulin signaling in obesity. In conclusion, our data demonstrate that cellular senescence of hepatic endothelium promotes obesity-induced insulin resistance, which is tightly regulated by the expression of Meg3. Our results suggest that manipulation of Meg3 expression may represent a novel approach to managing obesity-associated hepatic endothelial senescence and insulin resistance.


Subject(s)
Glucose , RNA, Long Noncoding , Cellular Senescence/genetics , Endothelial Cells , Endothelium , Homeostasis , Humans , Insulin , Liver , Obesity/genetics , RNA, Long Noncoding/genetics , Signal Transduction
3.
J Leukoc Biol ; 94(5): 963-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23766529

ABSTRACT

PD-1 and PD-L1 have been reported to provide peripheral tolerance by inhibiting TCR-mediated activation. We have reported that PD-L1-/- animals are protected from sepsis-induced mortality and immune suppression. Whereas studies indicate that LSECs normally express PD-L1, which is also thought to maintain local immune liver tolerance by ligating the receptor PD-1 on T lymphocytes, the role of PD-L1 in the septic liver remains unknown. Thus, we hypothesized initially that PD-L1 expression on LSECs protects them from sepsis-induced injury. We noted that the increased vascular permeability and pSTAT3 protein expression in whole liver from septic animals were attenuated in the absence of PD-L1. Isolated LSECs taken from septic animals, which exhibited increased cell death, declining cell numbers, reduced cellular proliferation, and VEGFR2 expression (an angiogenesis marker), also showed improved cell numbers, proliferation, and percent VEGFR2(+) levels in the absence of PD-L1. We also observed that sepsis induced an increase of liver F4/80(+)PD-1(+)-expressing KCs and increased PD-L1 expression on LSECs. Interestingly, PD-L1 expression levels on LSECs decreased when PD-1(+)-expressing KCs were depleted with clodronate liposomes. Contrary to our original hypothesis, we document here that increased interactions between PD-1(+) KCs and PD-L1(+) LSECs appear to lead to the decline of normal endothelial function-essential to sustain vascular integrity and prevent ALF. Importantly, we uncover an underappreciated pathological aspect of PD-1:PD-L1 ligation during inflammation that is independent of its normal, immune-suppressive activity.


Subject(s)
B7-H1 Antigen/physiology , Endothelial Cells/pathology , Kupffer Cells/physiology , Liver/pathology , Sepsis/pathology , Animals , Apoptosis , Capillary Permeability , Cell Proliferation , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , fas Receptor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL