Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 297(3): 101009, 2021 09.
Article in English | MEDLINE | ID: mdl-34331942

ABSTRACT

Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel's pore-lining region to the C-terminal domain (residues 332-398) and identified a membrane-insertion domain (MID, residues 177-228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368-395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.


Subject(s)
Apolipoprotein L1/metabolism , Ion Channels/chemistry , Leucine Zippers , Apolipoprotein L1/chemistry , Cations/metabolism , Humans , Protein Conformation , Protein Domains
2.
J Biol Chem ; 295(38): 13138-13149, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32727852

ABSTRACT

The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.


Subject(s)
Apolipoprotein L1/chemistry , Immunity, Innate , Animals , Apolipoprotein L1/genetics , Apolipoprotein L1/immunology , Helix-Loop-Helix Motifs , Humans , Hydrogen-Ion Concentration , Papio hamadryas , Trypanosoma brucei brucei/immunology
3.
Bioorg Med Chem Lett ; 30(12): 127207, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32354566

ABSTRACT

A previous publication from our laboratory reported the identification of a new class of 2-(1H-imidazo-2-yl)piperazines as potent T. brucei growth inhibitors as potential treatment for Human African Trypanosomiasis (HAT). This work describes the structure-activity relationship (SAR) around the hit compound 1, which led to the identification of the optimized compound 18, a single digit nanomolar inhibitor (EC50 7 nM), not cytotoxic and with optimal in vivo profile that made it a suitable candidate for efficacy studies in a mouse model mimicking the second stage of disease.


Subject(s)
Growth Inhibitors/chemistry , Piperazines/chemistry , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Cell Survival/drug effects , Drug Evaluation, Preclinical , Growth Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Isomerism , Morpholines/chemistry , Piperazines/pharmacology , Quinolines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/pharmacology
4.
Molecules ; 25(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660058

ABSTRACT

The rationale inspiring the discovery of lead compounds for the treatment of human parasitic protozoan diseases from natural sources is the well-established use of medicinal plants in various systems of traditional medicine. On this basis, we decided to select an overlooked medicinal plant growing in central Italy, Marrubium incanum Desr. (Lamiaceae), which has been used as a traditional remedy against protozoan diseases, and to investigate its potential against Human African trypanosomiasis (HAT). For this purpose, we assayed three extracts of different polarities obtained from the aerial parts of M. incanum-namely, water (MarrInc-H2O), ethanol (MarrInc-EtOH) and dichloromethane (MarrInc-CH2Cl2)-against Trypanosoma brucei (TC221), with the aim to discover lead compounds for the development of antitrypanosomal drugs. Their selectivity index (SI) was determined on mammalian cells (BALB/3T3 mouse fibroblasts) as a counter-screen for toxicity. The preliminary screening selected the MarrInc-CH2Cl2 extract as the most promising candidate against HAT, showing an IC50 value of 28 µg/mL. On this basis, column chromatography coupled with the NMR spectroscopy of a MarrInc-CH2Cl2 extract led to the isolation and identification of five compounds i.e. 1-α-linolenoyl-2-palmitoyl-3-stearoyl-sn- glycerol (1), 1-linoleoyl-2-palmitoyl-3-stearoyl-sn-glycerol (2), stigmasterol (3), palmitic acid (4), and salvigenin (5). Notably, compounds 3 and 5 were tested on T. brucei, with the latter being five-fold more active than the MarrInc-CH2Cl2 extract (IC50 = 5.41 ± 0.85 and 28 ± 1.4 µg/mL, respectively). Furthermore, the SI for salvigenin was >18.5, showing a preferential effect on target cells compared with the dichloromethane extract (>3.6). Conversely, stigmasterol was found to be inactive. To complete the work, also the more polar MarrInc-EtOH extract was analyzed, giving evidence for the presence of 2″-O-allopyranosyl-cosmosiin (6), verbascoside (7), and samioside (8). Our findings shed light on the phytochemistry of this overlooked species and its antiprotozoal potential, providing evidence for the promising role of flavonoids such as salvigenin for the treatment of protozoal diseases.


Subject(s)
Marrubium/chemistry , Plant Extracts/chemistry , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , 3T3 Cells , Animals , Humans , Mice , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology
5.
Molecules ; 25(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333924

ABSTRACT

A second generation of 4-aminoquinoline- and 8-aminoquinoline-based tetrazoles and lactams were synthesized via the Staudinger and Ugi multicomponent reactions. These compounds were subsequently evaluated in vitro for their potential antiplasmodium activity against a multidrug-resistant K1 strain and for their antitrypanosomal activity against a cultured T. b. rhodesiense STIB900 strain. Several of these compounds (4a-g) displayed good antiplasmodium activities (IC50 = 0.20-0.62 µM) that were comparable to the reference drugs, while their antitrypanosomal activity was moderate (<20 µM). Compound 4e was 2-fold more active than primaquine and was also the most active (IC50 = 7.01 µM) against T. b. rhodesiense and also exhibited excellent aqueous solubility (>200 µM) at pH 7.


Subject(s)
Aminoquinolines/chemical synthesis , Aminoquinolines/pharmacology , Lactams/chemistry , Tetrazoles/chemistry , Aminoquinolines/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Chemistry Techniques, Synthetic , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects
6.
Bioorg Med Chem Lett ; 28(23-24): 3689-3692, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30482621

ABSTRACT

The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5 nM), is not cytotoxic (HeLa CC50 > 25,000 nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120 nM, P. falciparum EC50 3624 nM).


Subject(s)
Piperazines/chemistry , Piperazines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , HeLa Cells , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/parasitology
7.
Exp Parasitol ; 162: 49-56, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26772786

ABSTRACT

To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Animals , Cell Line , Cell Survival/drug effects , Cost-Benefit Analysis , Dose-Response Relationship, Drug , High-Throughput Screening Assays/economics , Indicators and Reagents , Inhibitory Concentration 50 , Melarsoprol/pharmacology , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Oxazines , Pentamidine/pharmacology , Rats , Reproducibility of Results , Sensitivity and Specificity , Xanthenes
8.
Curr Trop Med Rep ; 10(4): 222-234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38939748

ABSTRACT

Purpose of Review: Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne parasitic neglected tropical disease (NTD) endemic in sub-Saharan Africa. This review aims to enhance our understanding of HAT and provide valuable insights to combat this significant public health issue by synthesizing the latest research and evidence. Recent Findings: HAT has reached a historical < 1000 cases in 2018. In patients without neurologic symptoms and signs, the likelihood of a severe meningoencephalitic stage is deemed low, obviating the need for a lumbar puncture to guide treatment decisions using fexinidazole. Summary: Both forms of the disease, gambiense HAT (gHAT) and rhodesiense HAT (rHAT), have specific epidemiology, risk factors, diagnosis, and treatment. Disease management still requires a high index of suspicion, infectious disease expertise, and specialized medical care. Essential stakeholders in health policy are critical to accomplishing the elimination goals of the NTD roadmap for 2021-2030.

9.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37584491

ABSTRACT

Despite the recent advances in drug research, finding a safe, effective, and easy to use chemotherapy for human African trypanosomiasis (HAT) remains a challenging task. Trypanosomatids have developed resistance mechanisms towards melarsoprol (the current drug of choice), and the fact that it is poisonous is problematic. Therefore, a search for alternative therapeutics against the parasite is urgently needed. Natural products offer potential for drug discovery, but little or nothing is known about the target of inhibition or possible mode of inhibition. Therefore, this study aimed to use molecular docking and molecular dynamics simulations to evaluate 30 antitrypanosomal natural products as potential inhibitors of trypanothione reductase, a key protein necessary for the survival of the Trypanosoma brucei. The study also assessed the pharmacokinetic properties of the most promising compounds. Of the compounds evaluated, α-bisabolol, letestuianin C, waltherione, and mexicanin E were found to bind at the active site of TR and interact with Met115, Tyr112, and Trp23, which are essential for enzyme functioning. Molecular dynamic simulations revealed the sustained binding of α-bisabolol and letestuianin C throughout the simulation period, potentially obstructing the binding of the substrate (T[S]2) and impeding catalysis. The binding of these compounds to TR led to the presence of solvent molecules in the enzyme's active site, and this could potentially lead to protein aggregation. Furthermore, α-bisabolol and letestuianin C exhibited promising safety profiles. Consequently, α-bisabolol and letestuianin C have been shown to be viable candidates for targeting trypanothione reductase in the fight against human African trypanosomiasis.Communicated by Ramaswamy H. Sarma.

10.
Soc Sci Med ; 299: 114882, 2022 04.
Article in English | MEDLINE | ID: mdl-35299059

ABSTRACT

Human African Trypanosomiasis (HAT), commonly known as sleeping sickness, is closer than ever to being eliminated as a public health problem. The main narratives for the impressive drop in cases allude to drugs discovery and global financing and coordination. They raise questions about the relationship between well-funded international clinical research and much less well-endowed national disease control programmes. They need to be complemented with a solid understanding of how (and why) national programmes that do most of the frontline work are structured and operate. We analyse archives and in-depth interviews with key stakeholders and explore the role the national HAT programme played in the Democratic Republic of the Congo (DRC), a country that consistently accounts for over 60% of HAT cases worldwide. The programme grew strongly between 1996, when it was barely surviving, and 2016. Our political economy lens highlights how the leadership of the programme managed to carve itself substantial autonomy within the health system, forged new international alliances, and used clinical trials and international research to not only improve treatment and diagnosis but also to enhance its under-resourced disease control system. The DRC, a country often described as 'fragile', stands out as having an efficient national HAT programme that made full use of a window of opportunity that arose in the early 2000s when international researchers and donors responded to the ambition to simplify disease control and make HAT treatment more humane. We discuss the sustainability of both the vertical approach embodied in the DRC's national HAT programme and its funding model at a time when the number of HAT cases is at an all-time low and better integration within the health system is urgent. Our study provides insights for collaborations between unevenly-resourced international research efforts and national health programmes.


Subject(s)
Trypanosomiasis, African , Clinical Trials as Topic , Democratic Republic of the Congo/epidemiology , Humans , Public Health , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control
11.
Eur J Med Chem ; 226: 113861, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34624822

ABSTRACT

Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma brucei (T. b.), and affects communities in sub-Saharan Africa. Previously, analogues of a tetrahydroisoquinoline scaffold were reported as having in vitro activity (IC50 = 0.25-70.5 µM) against T. b. rhodesiense. In this study the synthesis and antitrypanosomal activity of 80 compounds based around a core tetrahydroisoquinoline scaffold are reported. A detailed structure activity relationship was revealed, and five derivatives (two of which have been previously reported) with inhibition of T. b. rhodesiense growth in the sub-micromolar range were identified. Four of these (3c, 12b, 17b and 26a) were also found to have good selectivity over mammalian cells (SI > 50). Calculated logD values and preliminary ADME studies predict that these compounds are likely to have good absorption and metabolic stability, with the ability to passively permeate the blood brain barrier. This makes them excellent leads for a blood-brain barrier permeable antitrypanosomal scaffold.


Subject(s)
Tetrahydroisoquinolines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
12.
Med Chem ; 16(1): 24-38, 2020.
Article in English | MEDLINE | ID: mdl-31218962

ABSTRACT

More than 10 million people around the world are afflicted by Neglected Tropical Diseases, such as Chagas Disease, Human African Trypanosomiasis, and Leishmania. These diseases mostly occur in undeveloped countries that suffer from a lack of economic incentive, research, and policy for new compound development. Sulfonamide moieties are effective scaffolds present in several compounds that are determinants to treat various diseases, principally neglected tropical diseases. This review article examines the contribution of these scaffolds in medicinal chemistry in the last five years, focusing on three trypanosomatid parasites: Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. We also present perspectives for their use in drug designs in an effort to contribute to new drug development. In addition, we consider the physicochemical parameters, whose molecules all presented according to Lipinski's rule. The correlation between the selective index and LogP was evaluated, showing that sulfonamide derivatives can act differently against each trypanosomatid parasite. Moreover, the approaches of novel drugs and technologies are very important for the eventual drug discovery against trypanosomatid diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Sulfonamides/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
13.
Eur J Med Chem ; 185: 111827, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31732256

ABSTRACT

Human African trypanosomiasis (HAT), caused by the parasitic protozoa Trypanosoma brucei, is one of the fatal diseases in tropical areas and current medicines are insufficient. Thus, development of new drugs for HAT is urgently needed. Leucyl-tRNA synthetase (LeuRS), a recently clinically validated antimicrobial target, is an attractive target for development of antitrypanosomal drugs. In this work, we report a series of α-phenoxy-N-sulfonylphenyl acetamides as T. brucei LeuRS inhibitors. The most potent compound 28g showed an IC50 of 0.70 µM which was 250-fold more potent than the starting hit compound 1. The structure-activity relationship was also discussed. These acetamides provided a new scaffold and lead compounds for the further development of clinically useful antitrypanosomal agents.


Subject(s)
Acetamides/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Acetamides/chemical synthesis , Acetamides/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Leucine-tRNA Ligase/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/enzymology
14.
Trop Med Infect Dis ; 5(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906341

ABSTRACT

While academic literature has paid careful attention to the technological efforts-drugs, tests, and tools for vector control-deployed to eliminate Gambiense Human African Trypanosomiasis (HAT), the human resources and health systems dimensions of elimination are less documented. This paper analyses the perspectives and experiences of frontline nurses, technicians, and coordinators who work for the HAT programme in the former province of Bandundu in the Democratic Republic of the Congo, at the epidemic's very heart. The research is based on 21 semi-structured interviews conducted with frontline workers in February 2018. The results highlight distinctive HAT careers as well as social elevation through specialised work. Frontline workers are concerned about changes in active screening strategies and the continued existence of the vector, which lead them to question the possibility of imminent elimination. Managers seem to anticipate a post-HAT situation and prepare for the employment of their staff; most workers see their future relatively confidently, as re-allocated to non-vertical units. The findings suggest concrete pathways for improving the effectiveness of elimination efforts: improving active screening through renewed engagements with local leaders, conceptualising horizontal integration in terms of human resources mobility, and investing more in detection and treatment activities (besides innovation).

15.
Trop Med Infect Dis ; 4(4)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835660

ABSTRACT

Human African Trypanosomiasis (HAT) is a neglected disease caused by the protozoan parasites Trypanosoma brucei and transmitted by tsetse flies that progresses in two phases. Symptoms in the first phase include fever, headaches, pruritus, lymphadenopathy, and in certain cases, hepato- and splenomegaly. Neurological disorders such as sleep disorder, aggressive behavior, logorrhea, psychotic reactions, and mood changes are signs of the second stage of the disease. Diagnosis follows complex algorithms, including serological testing and microscopy. Our case report illustrates the course of events of a 41-year old woman with sleep disorder, among other neurological symptoms, whose diagnosis was made seven months after the onset of symptoms. The patient had consulted two different hospitals in Kinshasa and was on the verge of being discharged from a third due to negative laboratory test results. This case report highlights the challenges that may arise when a disease is on the verge of eradication.

16.
Parasite Epidemiol Control ; 6: e00113, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31528738

ABSTRACT

The World Health Organisation has set the goal for elimination of Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense (gHAT), as a public health problem for 2020 and for the total interruption of transmission to humans for 2030. Targeting human carriers and potential animal reservoir infections will be critical to achieving this ambitious goal. However, there is continuing debate regarding the significance of reservoir host animals, wild and domestic, in different epidemiological contexts, whilst the extent and duration of the asymptomatic human carrier state is similarly undefined. This paper reviews the status of the knowledge of latent infections in wild and domestic animal reservoir hosts towards the goal of better understanding their role in the transmission dynamic of the disease. Focus areas include the transmission cycles in non-human hosts, the infectivity of animal reservoirs to Glossina palpalis s.l., the longevity of infection and the stability of T. b. gambiense biological characteristics in antelopes and domestic animals. There is compelling evidence that T. b. gambiense can establish and persist in experimentally infected antelopes, pigs and dogs for a period of at least two years. In particular, metacyclic transmission of T. b. gambiense has been reported in antelope-G.p.palpalis-antelope and pig-G.p.gambiensis-pig cycles. Experimental studies demonstrate that the infectiveness of latent animal reservoir infections with T. b. gambiense is retained in animal-Glossina-animal cycles (antelopes and pigs) for periods of three years and human infectivity markers (human serum resistance, zymodeme, DNA) are stable in non-human hosts for the same period. These observations shed light on the epidemiological significance of animal reservoir hosts in specific ecosystems characterized by presently active, as well as known "old" HAT foci whilst challenging the concept of total elimination of all transmission by 2030. This target is also compromised by the existence of human asymptomatic carriers of T. b. gambiense often detected outside Africa after having lived outside tsetse infested areas for many years - sometimes decades. Non-tsetse modes of transmission may also play a significant but underestimated role in the maintenance of foci and also preclude the total elimination of transmission - these include mother to child transmission and sexual transmission. Both these modes of transmission have been the subject of case reports yet their frequency in African settings remains to be ascertained when the context of residual foci are discussed yet both challenge the concept of the possibility of the total elimination of transmission.

17.
Parasit Vectors ; 11(1): 105, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29471865

ABSTRACT

BACKGROUND: While the combination of nifurtimox and eflornithine (NECT) is currently recommended for the treatment of the late stage human African trypansomiasis (HAT), single-agent eflornithine was still the treatment of choice when this trial commenced. This study intended to provide supportive evidence to complement previous trials. METHODS: A multi-centre randomised, open-label, non-inferiority trial was carried out in the Trypanosoma brucei gambiense endemic districts of North-Western Uganda to compare the efficacy and safety of NECT (200 mg/kg eflornithine infusions every 12 h for 7 days and 8 hourly oral nifurtimox at 5 mg/kg for 10 days) to the standard eflornithine regimen (6 hourly at 100 mg/kg for 14 days). The primary endpoint was the cure rate, determined as the proportion of patients alive and without laboratory signs of infection at 18 months post-treatment, with no demonstrated trypanosomes in the cerebrospinal fluid (CSF), blood or lymph node aspirates, and CSF white blood cell count < 20 /µl. The non-inferiority margin was set at 10%. RESULTS: One hundred and nine patients were enrolled; all contributed to the intent-to-treat (ITT), modified intent-to-treat (mITT) and safety populations, while 105 constituted the per-protocol population (PP). The cure rate was 90.9% for NECT and 88.9% for eflornithine in the ITT and mITT populations; the same was 90.6 and 88.5%, respectively in the PP population. Non-inferiority was demonstrated for NECT in all populations: differences in cure rates were 0.02 (95% CI: -0.07-0.11) and 0.02 (95% CI: -0.08-0.12) respectively. Two patients died while on treatment (1 in each arm), and 3 more during follow-up in the NECT arm. No difference was found between the two arms for the secondary efficacy and safety parameters. A meta-analysis involving several studies demonstrated non-inferiority of NECT to eflornithine monotherapy. CONCLUSIONS: These results confirm findings of earlier trials and support implementation of NECT as first-line treatment for late stage T. b. gambiense HAT. The overall risk difference for cure between NECT and eflornithine between this and two previous randomised controlled trials is 0.03 (95% CI: -0.02-0.08). The NECT regimen is simpler, safer, shorter and less expensive than single-agent DFMO. TRIAL REGISTRATION: ISRCTN ISRCTN03148609 (registered 18 April 2008).


Subject(s)
Eflornithine/administration & dosage , Nifurtimox/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosoma brucei gambiense , Trypanosomiasis, African/drug therapy , Adolescent , Adult , Drug Therapy, Combination , Eflornithine/adverse effects , Female , Follow-Up Studies , Humans , Male , Nifurtimox/adverse effects , Safety , Treatment Outcome , Trypanocidal Agents/adverse effects , Trypanosomiasis, African/epidemiology , Uganda/epidemiology , Young Adult
18.
Trends Parasitol ; 34(10): 818-827, 2018 10.
Article in English | MEDLINE | ID: mdl-30181071

ABSTRACT

Human African trypanosomiasis (HAT) is responsible for around 3000 reported cases each year. Treatments for HAT are expensive and problematic to administer, and available drugs are old and less than ideal, some with high levels of toxicity that result in debilitating and, in some cases, fatal side effects. Treatment options are limited, with only one drug, eflornithine, introduced in the last 28 years. Here we examine the limitations of current chemotherapeutic approaches to manage HAT, the constraints to new drug development exploring drug failures and new drugs on the horizon, and consider the epidemiological, political, social, and economic factors influencing drug development.


Subject(s)
Drug Development/trends , Trypanocidal Agents , Trypanosomiasis, African/drug therapy , Drug Development/economics , Drug Development/standards , Humans , Time , Trypanocidal Agents/standards
19.
Infect Dis Poverty ; 6(1): 16, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28162093

ABSTRACT

BACKGROUND: Uganda has suffered from a series of epidemics of Human African Trypanosomiasis (HAT), a tsetse transmitted disease, also known as sleeping sickness. The area affected by acute Trypanosoma brucei rhodesiense HAT (rHAT) has been expanding, driven by importation of infected cattle into regions previously free of the disease. These regions are also affected by African Animal Trypanosomiasis (AAT) demanding a strategy for integrated disease control. METHODS: In 2008, the Public Private Partnership, Stamp Out Sleeping Sickness (SOS) administered a single dose of trypanocide to 31 486 head of cattle in 29 parishes in Dokolo and Kaberamaido districts. This study examines the impact of this intervention on the prevalence of rHAT and AAT trypanosomes in cattle from villages that had (HAT+ve) or had not (HAT-ve) experienced a recent case of rHAT. Cattle herds from 20 villages were sampled and screened by PCR, pre-intervention and 6-months post-intervention, for the presence or absence of: Trypanosoma brucei s.l.; human infective T. b. rhodesiense; Trypanosoma vivax; and Trypanosoma congolense savannah. RESULTS: Post-intervention, there was a significant decrease in the prevalence of T. brucei s.l. and the human infective sub-species T. b. rhodesiense in village cattle across all 20 villages. The prevalence of T. b. rhodesiense was reduced from 2.4% to 0.74% (P < 0.0001), with the intervention showing greater impact in HAT-ve villages. The number of villages containing cattle harbouring human infective parasites decreased from 15/20 to 8/20, with T. b. rhodesiense infection mainly persisting within cattle in HAT+ve villages (six/eight). The proportion of T. brucei s.l. infections identified as human infective T. b. rhodesiense decreased after the intervention from 8.3% (95% CI = 11.1-5.9%) to 4.1% (95% CI = 6.8-2.3%). Villages that had experienced a recent human case (HAT+ve villages) showed a significantly higher prevalence for AAT both pre- and post-intervention. For AAT the prevalence of T. vivax was significantly reduced from 5.9% to 0.05% post-intervention while the prevalence of T. congolense increased from 8.0% to 12.2%. CONCLUSIONS: The intervention resulted in a significant decrease in the prevalence of T. brucei s.l., human infective T. b. rhodesiense and T. vivax infection in village cattle herds. The proportion of T. brucei s.l. that were human infective, decreased from 1:12 T. brucei s.l. infections before the intervention to 1:33 post-intervention. It is clearly more difficult to eliminate T. b. rhodesiense from cattle in villages that have experienced a human case. Evidence of elevated levels of AAT in livestock within village herds is a useful indicator of risk for rHAT in Uganda. Integrated veterinary and medical surveillance is key to successful control of zoonotic rHAT.


Subject(s)
Cattle/parasitology , Trypanocidal Agents , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Veterinary Drugs , Animals , Humans , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/transmission , Trypanosomiasis, African/veterinary , Uganda/epidemiology , Veterinary Drugs/administration & dosage , Veterinary Drugs/therapeutic use
20.
Acta Trop ; 165: 216-229, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27570206

ABSTRACT

INTRODUCTION: Human African trypanosomiasis (HAT) comprises two fatal parasitic diseases. Uganda is home to both chronic T. b. gambiense (gHAT) and the acute zoonotic form T. b. rhodesiense (rHAT) which occur in two large but discrete geographical foci. The area affected by rHAT has been rapidly expanding due to importation of T. b. rhodesiense infected cattle into tsetse infested but previously HAT free districts. Migration of rHAT has resulted in a considerable human health burden in these newly affected districts. Here, we examined the impact of a single, district-wide, mass chemotherapeutic livestock intervention, on T. b. rhodesiense prevalence in cattle and on incidence and distribution of human rHAT cases in Kamuli and Soroti districts in eastern Uganda. METHODS: A single mass intervention in domestic cattle (n=30,900) using trypanocidal drugs was undertaken in November and December 2002 under the EU funded Farming in Tsetse Controlled Areas (FITCA) programme. The intervention targeted removal of the reservoir of infection i.e. human infective T. b. rhodesiense parasites in cattle, in the absence of tsetse control. Interventions were applied in high-risk sub-counties of Kamuli district (endemic for rHAT) and Soroti district (where rHAT has been recently introduced). The prevalence of T. brucei s.l. and the human infective subspecies, T. b. rhodesiense in cattle (n=1833) was assessed before and 3 and 12 months after intervention using PCR-based methods. A combination of descriptive statistical analysis and spatial scan statistics were applied to analyse rHAT cases reported over a 5-year period (January 2000-July 2005). RESULTS: A single intervention was highly effective at removing human infective T. b. rhodesiense parasites from the cattle reservoir and contributed to a significant decrease in human rHAT cases. Intervention coverage was higher in Kamuli (81.1%) than in Soroti (47.3%) district but despite differences in coverage both districts showed a reduction in prevalence of T. b. brucei s.l. and T. b. rhodesiense. In Kamuli, the prevalence of T. brucei s.l. decreased by 54%, from 6.75% to 3.11%, 3, months post-intervention, rising to 4.7% at 12 months. The prevalence of T. b. rhodesiense was 3% pre-intervention and no T. b. rhodesiense infections were detected 3 and 12, months post-treatment. In Soroti, the prevalence of T. brucei s.l. in cattle decreased by 38% (from 21% to 13%) 3 months after intervention decreasing to less than 10% at 12 months. The prevalence of T. b. rhodesiense was reduced by 50% at 12-months post-intervention (6%-3%). Most notably, was the impact of the intervention on the population dynamics between T. b. brucei and human infective T. b. rhodesiense. Before intervention in Kamuli district 56% of T. b. brucei s.l. circulating in cattle were T. b. rhodesiense; at both 3 and 12 months after intervention none of the re-infecting T. b. brucei s.l. were human infective, T. rhodesiense. For human rHAT cases, there was a seven-fold decrease in rHAT incidence after intervention in Kamuli district (5.54 cases/1,000 head of population 2000-2002 to 0.76 cases/1,000, 2003-2005). Incidence data suggests that the intervention had minimal impact on the number of rHAT cases in Soroti overall, but showed a significant decrease in the seasonal peak of cases in the year following treatment. CONCLUSION: A single intervention, targeted at cattle, introduced at district level, in the absence of tsetse control, was highly effective at removing human infective rHAT parasites from the cattle reservoir and contributed to a significant decrease in human rHAT cases. The differential impacts observed between the two districts are related to both the different stages of rHAT endemicity in the districts, and levels of intervention coverage achieved in the cattle population. Treatment of cattle to remove the reservoir of rHAT infection offers a promising and cost effective approach for the control of rHAT. It is important that cattle are treated before relocation to prevent possible merger of the two HAT foci, which would complicate diagnosis and treatment of both gHAT and rHAT.


Subject(s)
Animals, Domestic/parasitology , Livestock/parasitology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Zoonoses/prevention & control , Animals , Cattle , Cattle Diseases/epidemiology , Female , Humans , Incidence , Male , Mass Vaccination , Polymerase Chain Reaction/methods , Prevalence , Trypanosomiasis, African/epidemiology , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL