Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Publication year range
1.
Cell ; 184(26): 6299-6312.e22, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34861190

ABSTRACT

The NACHT-, leucine-rich-repeat- (LRR), and pyrin domain-containing protein 3 (NLRP3) is emerging to be a critical intracellular inflammasome sensor of membrane integrity and a highly important clinical target against chronic inflammation. Here, we report that an endogenous, stimulus-responsive form of full-length mouse NLRP3 is a 12- to 16-mer double-ring cage held together by LRR-LRR interactions with the pyrin domains shielded within the assembly to avoid premature activation. Surprisingly, this NLRP3 form is predominantly membrane localized, which is consistent with previously noted localization of NLRP3 at various membrane organelles. Structure-guided mutagenesis reveals that trans-Golgi network dispersion into vesicles, an early event observed for many NLRP3-activating stimuli, requires the double-ring cages of NLRP3. Double-ring-defective NLRP3 mutants abolish inflammasome punctum formation, caspase-1 processing, and cell death. Thus, our data uncover a physiological NLRP3 oligomer on the membrane that is poised to sense diverse signals to induce inflammasome activation.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Mice , Models, Biological , Models, Molecular , Mutation/genetics , NIMA-Related Kinases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/isolation & purification , NLR Family, Pyrin Domain-Containing 3 Protein/ultrastructure , Nigericin/pharmacology , Protein Binding , Protein Domains , Protein Multimerization , trans-Golgi Network/metabolism
2.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668719

ABSTRACT

Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.


Subject(s)
Clathrin , Animals , Humans , Cell Membrane/metabolism , Clathrin/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism
3.
Traffic ; 24(12): 587-609, 2023 12.
Article in English | MEDLINE | ID: mdl-37846526

ABSTRACT

In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.


Subject(s)
Copper , Lysosomes , Copper/metabolism , Copper-Transporting ATPases/metabolism , Protein Transport , Lysosomes/metabolism , Exocytosis
4.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37539494

ABSTRACT

Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.


Subject(s)
Saccharomyces cerevisiae Proteins , rab GTP-Binding Proteins , trans-Golgi Network , Adaptor Proteins, Vesicular Transport/metabolism , Clathrin/metabolism , Endosomes/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , trans-Golgi Network/metabolism , Transcription Factor AP-1/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
5.
Traffic ; 23(3): 158-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35076977

ABSTRACT

The intracellular trafficking of ß-site amyloid precursor protein (APP) cleaving enzyme (BACE1) and APP regulates amyloid-ß production. Our previous work demonstrated that newly synthesized BACE1 and APP are segregated into distinct trafficking pathways from the trans-Golgi network (TGN), and that alterations in their trafficking lead to an increase in Aß production in non-neuronal and neuronal cells. However, it is not known whether BACE1 and APP are transported through the Golgi stacks together and sorted at the TGN or segregated prior to arrival at the TGN. To address this question, we have used high-resolution Airyscan technology followed by Huygens deconvolution to quantify the overlap of BACE1 and APP in Golgi subcompartments in HeLa cells and primary neurons. Here, we show that APP and BACE1 are segregated, on exit from the endoplasmic reticulum and in the cis-Golgi and throughout the Golgi stack. In contrast, the transferrin receptor, which exits the TGN in AP-1 mediated transport carriers as for BACE1, colocalizes with BACE1, but not APP, throughout the Golgi stack. The segregation of APP and BACE1 is independent of the Golgi ribbon structure and the cytoplasmic domain of the cargo. Overall, our findings reveal the segregation of different membrane cargoes early in the secretory pathway, a finding relevant to the regulation of APP processing events.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport/physiology
6.
J Biol Chem ; 299(3): 102979, 2023 03.
Article in English | MEDLINE | ID: mdl-36739948

ABSTRACT

The epidermal growth factor receptor (EGFR) plays important roles in cancer progression and is one of the major drug targets for targeted cancer therapy. Although fundamentally important, how newly synthesized EGFR is delivered to the cell surface to perform its cellular functions remains to be further investigated. In this study, we found using the approaches of gene knockout, siRNA knockdown, streptavidin pull-down, and co-immunoprecipitation assays that the clathrin adaptor complex-1 (AP-1) and Rab12 interact with EGFR and regulate the export of EGFR out of the trans-Golgi network (TGN). In addition, the tyrosine residue at the 998 position on human EGFR is critical to bind to AP-1, and this residue is important for TGN export of EGFR. We demonstrate that AP-1 and Rab12 are important for epidermal growth factor-induced phosphorylation of EGFR, cell elongation, and proliferation, suggesting that AP-1-mediated and Rab12-mediated post-Golgi trafficking is important for EGFR signaling. Moreover, TGN export of the constitutively activated mutant form of EGFR (EGFRL858R) is independent of AP-1 and Rab12. Our results reveal insights into the molecular mechanisms that mediate the TGN-to-cell surface delivery of EGFR and indicate that TGN export of WT EGFR and EGFRL858R depends on different cellular factors.


Subject(s)
Adaptor Protein Complex 1 , rab GTP-Binding Proteins , Humans , ErbB Receptors/genetics , ErbB Receptors/metabolism , Golgi Apparatus/metabolism , Protein Transport , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/genetics , trans-Golgi Network/metabolism , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex 1/metabolism
7.
Biochem Biophys Res Commun ; 695: 149480, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38215552

ABSTRACT

Here, we report that human lactoferrin (hLF), known for its anticancer properties, induced intracellular activation of the Na+/H+ exchanger (NHE) 7 in human lung cancer PC-9 cells. Compared to non-fused hLF, the fusion of human serum albumin (HSA) with hLF (hLF-HSA) facilitated its internalization into PC-9 cells in a caveolae-mediated manner, thereby exhibiting enhanced anti-proliferative effects. Although hLF alone did not exhibit any discernible effects, hLF-HSA resulted in organelle alkalization as detected using an acidotropic pH indicator. hLF-HSA-induced elevation of organelle pH and inhibition of cancer growth were abolished by NHE7 siRNA. hLF-HSA upregulated NHE7. Thus, upon cellular uptake, hLF-HSA triggers proton leakage through the upregulation of NHE7. This process led to organelle alkalization, probably in the trans-Golgi network (TGN) as suggested by the localization of NHE7 in PC-9 cells, thereby suppressing lung cancer cell growth. Forcing the cellular uptake of hLF alone using a caveolae-mediated endocytosis activator led to an increase in organelle pH. Furthermore, cell entry of hLF also activated proton-loading NHE7, leading to organelle acidification in the pancreatic cancer cell line MIA PaCa-2. Therefore, the intracellularly delivered hLF functions as an activator of NHE7.


Subject(s)
Lactoferrin , Lung Neoplasms , Sodium-Hydrogen Exchangers , Humans , Lactoferrin/metabolism , Lactoferrin/pharmacology , Lung Neoplasms/metabolism , Protons , Sodium-Hydrogen Exchangers/metabolism , trans-Golgi Network/metabolism
8.
J Exp Bot ; 75(12): 3731-3747, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38676707

ABSTRACT

The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.


Subject(s)
Arabidopsis , Cell Wall , Cell Wall/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Endocytosis/physiology , Protein Transport , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Benzamides
9.
Arch Biochem Biophys ; 758: 110049, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879142

ABSTRACT

Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.


Subject(s)
ADP-Ribosylation Factors , Guanine Nucleotide Exchange Factors , trans-Golgi Network , trans-Golgi Network/metabolism , Humans , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Adenosine Triphosphatases/metabolism , HeLa Cells , Protein Binding , Membrane Proteins , Phospholipid Transfer Proteins
10.
Cell Mol Life Sci ; 80(12): 353, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940699

ABSTRACT

The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.


Subject(s)
Membrane Proteins , Middle East Respiratory Syndrome Coronavirus , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Virus Assembly/genetics
11.
Cell Mol Biol Lett ; 29(1): 54, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627612

ABSTRACT

BACKGROUND: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS: We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS: We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION: Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.


Subject(s)
Receptor, IGF Type 2 , trans-Golgi Network , Cations/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Protein Transport/physiology , Receptor, IGF Type 2/metabolism , trans-Golgi Network/metabolism
12.
Bioessays ; 44(5): e2100270, 2022 05.
Article in English | MEDLINE | ID: mdl-35229908

ABSTRACT

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Subject(s)
Fibronectins , Muscular Dystrophies , Dystroglycans/genetics , Dystroglycans/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Glycosylation , Humans , Muscle, Skeletal , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Mutation , Pentosyltransferases/genetics , Pentosyltransferases/metabolism
13.
J Plant Res ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069582

ABSTRACT

Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.

14.
Mol Biol Evol ; 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35700212

ABSTRACT

Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.

15.
J Virol ; 96(14): e0081922, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35862696

ABSTRACT

Human cytomegalovirus (HCMV) exhibits a complex host-pathogen interaction with peripheral blood monocytes. We have identified a unique, cell-type specific retrograde-like intracellular trafficking pattern that HCMV utilizes to gain access to the monocyte nucleus and for productive infection. We show that infection of primary human monocytes, epithelial cells, and fibroblasts leads to an increase in the amount of the trafficking protein Syntaxin 6 (Stx6). However, only knockdown (KD) of Stx6 in monocytes inhibited viral trafficking to the trans-Golgi network (TGN), a requisite step for nuclear translocation in monocytes. Conversely, KD of Stx6 in epithelial cells and fibroblasts did not change the kinetics of nuclear translocation and productive infection. Stx6 predominantly functions at the level of the TGN where it facilitates retrograde transport, a trafficking pathway used by only a few cellular proteins and seldom by pathogens. We also newly identify that in monocytes, Stx6 exhibits an irregular vesicular localization rather than being concentrated at the TGN as seen in other cell-types. Lastly, we implicate that viral particles that associate with both Stx6 and EEA1 early in infection are the viral population that successfully traffics to the TGN at later time points and undergo nuclear translocation. Additionally, we show for the first time that HCMV enters the TGN, and that lack of Stx6 prevents viral trafficking to this organelle. We argue that we have identified an essential cell-type specific regulator that controls early steps in efficient productive infection of a cell-type required for viral persistence and disease. IMPORTANCE Human cytomegalovirus (HCMV) infection causes severe and often fatal disease in the immunocompromised. It is one of the leading infectious causes of birth defects and causes severe complications in transplant recipients. By uncovering the unique pathways used by the virus to infect key cells, such as monocytes, responsible for dissemination and persistence, we provide new potential targets for therapeutic intervention.


Subject(s)
Cytomegalovirus , Monocytes , Qa-SNARE Proteins , Cytomegalovirus/pathogenicity , Humans , Monocytes/virology , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Signal Transduction , trans-Golgi Network/metabolism
16.
J Virol ; 96(14): e0212721, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35758658

ABSTRACT

For more than 3 decades, mounting evidence has associated porcine reproductive and respiratory syndrome virus (PRRSV) infection with late-term abortions and stillbirths in sows and respiratory disease in piglets, causing enormous economic losses to the global swine industry. However, to date, the underlying mechanisms of PRRSV-triggered cell death have not been well clarified, especially in the pulmonary inflammatory injury characterized by the massive release of pro-inflammatory factors. Here, we demonstrated that PRRSV infection triggered gasdermin D-mediated host pyroptosis in vitro and in vivo. Mechanistically, PRRSV infection triggered disassembly of the trans-Golgi network (TGN); the dispersed TGN then acted as a scaffold for NLRP3 activation through phosphatidylinositol-4-phosphate. In addition, PRRSV replication-transcription complex (RTC) formation stimulated TGN dispersion and pyroptotic cell death. Furthermore, our results indicated that TMEM41B, an endoplasmic reticulum (ER)-resident host protein, functioned as a crucial host factor in the formation of PRRSV RTC, which is surrounded by the intermediate filament network. Collectively, these findings uncover new insights into clinical features as previously unrecognized mechanisms for PRRSV-induced pathological effects, which may be conducive to providing treatment options for PRRSV-associated diseases and may be conserved during infection by other highly pathogenic viruses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the pathogens responsible for major economic losses in the global swine industry. Characterizing the detailed process by which PRRSV induces cell death pathways will help us better understand viral pathogenesis and provide implications for therapeutic intervention against PRRSV. Here, we showed that PRRSV infection induces GSDMD-driven host pyroptosis and IL-1ß secretion through NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in vitro and in vivo. Furthermore, the molecular mechanisms of PRRSV-induced NLRP3 inflammasome activation and pyroptosis are elucidated here. The dispersed trans-Golgi network (TGN) induced by PRRSV serves as a scaffold for NLRP3 aggregation into multiple puncta via phosphatidylinositol 4-phosphate (PtdIns4P). Moreover, the formation of PRRSV replication-transcription complex is essential for TGN dispersion and host pyroptosis. This research advances our understanding of the PRRSV-mediated inflammatory response and cell death pathways, paving the way for the development of effective treatments for PRRSV diseases.


Subject(s)
Inflammasomes , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Pore Forming Cytotoxic Proteins , Pyroptosis , Animals , Female , Inflammasomes/metabolism , Macrophages, Alveolar/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Porcine Reproductive and Respiratory Syndrome/physiopathology , Porcine respiratory and reproductive syndrome virus/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis/physiology , Swine
17.
EMBO Rep ; 22(10): e50743, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34403206

ABSTRACT

The rapid formation and activation of the NLRP3 inflammasome is induced by co-stimulation with LPS and nigericin. It requires the LPS-stimulated activation of IKKß, which exerts its effects independently of de novo gene transcription, protein translation and other protein kinases activated by IKKß. IKKß is not required for the nigericin-induced dispersion of the trans-Golgi network (TGN), but to bring NLRP3 in proximity with TGN38. The nigericin-induced dispersion of the Golgi is enhanced by co-stimulation with LPS, and this enhancement is IKKß-dependent. Prolonged stimulation with LPS to increase the expression of NLRP3, followed by stimulation with nigericin, produced larger TGN38-positive puncta, and the ensuing activation of the NLRP3 inflammasome was also suppressed by IKKß inhibitors added prior to stimulation with nigericin. IKKß therefore has a key role in recruiting NLRP3 to the dispersed TGN, leading to the formation and activation of the NLRP3 inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , I-kappa B Kinase , Inflammasomes/genetics , Interleukin-1beta , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nigericin , trans-Golgi Network
18.
Proc Natl Acad Sci U S A ; 117(41): 25880-25889, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989160

ABSTRACT

The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , trans-Golgi Network/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Arabidopsis/classification , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Binding , Protein Transport , Vacuoles/genetics , Vacuoles/metabolism , trans-Golgi Network/genetics
19.
Traffic ; 21(11): 675-688, 2020 11.
Article in English | MEDLINE | ID: mdl-32909311

ABSTRACT

Secretion of the glycosylphosphatidylinositol-anchored protein (GPI-AP) EglC was investigated in the filamentous fungus Aspergillus nidulans, exploiting a sucrose-inducible promoter to conditionally express the protein in cells blocked at different steps of exocytosis. EglC is delivered to the cell surface in a polarized fashion, but appears to redistribute rapidly toward apico-distal regions. Inactivation of SarASar1 mediating COPII vesicle biogenesis resulted in the accumulation of EglC in the endoplasmic reticulum (ER) but, rather than concentrating in ER-exit-sites, the reporter labeled the ER uniformly. Abnormal posttranslational modifications of EglC were detected in sarAts and sed5ts mutants, suggesting that blocking COPII biogenesis or traffic in the ER/Golgi interface might affect GPI remodeling. EglC delivery to the plasma membrane requires, besides Golgi function, the TRAPPII complex mediating the biogenesis of RAB11 secretory vesicles at the TGN, but is unaffected by the absence of RAB5, the key regulator of early endosome biogenesis/maturation. Thus, unlike the soluble extracellular enzyme inulinase, EglC is directly delivered from the TGN to the plasma membrane without involvement of endosomes. We conclude that in A. nidulans, GPI-APs follow a direct secretory pathway from the ER to the plasma membrane.


Subject(s)
Aspergillus nidulans , Aspergillus nidulans/genetics , Endoplasmic Reticulum/metabolism , Glycosylphosphatidylinositols/metabolism , Golgi Apparatus/metabolism , Protein Transport , Secretory Pathway
20.
Semin Cell Dev Biol ; 107: 112-125, 2020 11.
Article in English | MEDLINE | ID: mdl-32317144

ABSTRACT

In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.


Subject(s)
Cell Membrane/metabolism , Golgi Apparatus/metabolism , Animals , Humans , Lipid Metabolism , Membrane Fusion , Protein Transport , Secretory Pathway
SELECTION OF CITATIONS
SEARCH DETAIL