Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.007
Filter
Add more filters

Publication year range
1.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
2.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244548

ABSTRACT

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Diacylglycerol Kinase , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Diacylglycerol Kinase/metabolism , NADPH Oxidases/metabolism , Phosphatidic Acids/metabolism , Phosphorylation , Plant Immunity , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/metabolism
3.
Cell ; 187(5): 1145-1159.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428394

ABSTRACT

Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.


Subject(s)
DNA-Directed RNA Polymerases , Plastids , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/chemistry , Gene Expression Regulation, Plant , Plant Proteins/chemistry , Plastids/enzymology , Transcription, Genetic
4.
Cell ; 186(7): 1300-1302, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001494

ABSTRACT

In 1916, Ricca hypothesized that plant defense mediators are transported by xylem vessels. While it was discovered that electrical waves generated at plant wounds also transmit information over great distances, the molecular nature of the so-called Ricca factor remained unclear. In this issue of Cell, Gao et al. identify thioglucoside glucohydrolases as a Ricca factor in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Herbivory , Plants , Arabidopsis Proteins/genetics , Xylem
5.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37643610

ABSTRACT

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Histones , Nucleosomes , Chromatin Assembly and Disassembly , DNA , DNA Modification Methylases , Epigenesis, Genetic , Histones/genetics , Nucleosomes/genetics , Semen , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
6.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931246

ABSTRACT

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome B/genetics , Phytochrome B/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Calcium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Light , Light Signal Transduction , Mutation
7.
Cell ; 186(7): 1337-1351.e20, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36870332

ABSTRACT

Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as ß-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Glycoside Hydrolases/metabolism , Glucosinolates/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Insecta
8.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37806310

ABSTRACT

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Peptide Hormones/metabolism , Peptides/metabolism , Pollen/metabolism , Pollen Tube/metabolism , Reproductive Isolation
9.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
10.
Cell ; 186(17): 3593-3605.e12, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37516107

ABSTRACT

Animal fertilization relies on hundreds of sperm racing toward the egg, whereas, in angiosperms, only two sperm cells are delivered by a pollen tube to the female gametes (egg cell and central cell) for double fertilization. However, unsuccessful fertilization under this one-pollen-tube design can be detrimental to seed production and plant survival. To mitigate this risk, unfertilized-gamete-controlled extra pollen tube entry has been evolved to bring more sperm cells and salvage fertilization. Despite its importance, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we report that, in Arabidopsis, the central cell secretes peptides SALVAGER1 and SALVAGER2 in a directional manner to attract pollen tubes when the synergid-dependent attraction fails or is terminated by pollen tubes carrying infertile sperm cells. Moreover, loss of SALs impairs the fertilization recovery capacity of the ovules. Therefore, this research uncovers a female gamete-attraction system that salvages seed production for reproductive assurance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/physiology , Fertilization , Pollen Tube , Seeds , Germ Cells, Plant
11.
Cell ; 186(22): 4788-4802.e15, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37741279

ABSTRACT

Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plastids , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Gravity Sensing , Plant Roots/metabolism , Plastids/metabolism , Starch/metabolism , Membrane Proteins/metabolism
12.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37192618

ABSTRACT

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Subject(s)
Arabidopsis , Plant Immunity , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Pattern Recognition , Signal Transduction
13.
Cell ; 185(18): 3341-3355.e13, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35998629

ABSTRACT

The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Hydrogen-Ion Concentration , Meristem/metabolism , Peptides/metabolism , Plant Cells , Plant Roots/metabolism , Plants/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction
14.
Cell ; 185(13): 2370-2386.e18, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35597242

ABSTRACT

2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Ligases/metabolism , NAD+ Nucleosidase/metabolism , Plant Diseases , Plant Immunity/physiology , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/metabolism , Nicotiana/genetics , Nicotiana/metabolism
15.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233164

ABSTRACT

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Germination , Intercellular Signaling Peptides and Proteins/metabolism , Prions/metabolism , Seeds/growth & development , Water/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/ultrastructure , Dehydration , Imaging, Three-Dimensional , Intercellular Signaling Peptides and Proteins/chemistry , Mutation/genetics , Plant Dormancy , Plants, Genetically Modified , Protein Domains , Protein Isoforms/metabolism , Seeds/ultrastructure
16.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34536345

ABSTRACT

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/parasitology , Host-Parasite Interactions/physiology , Parasites/physiology , Proteolysis , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Genetic Engineering , Humans , Insecta/physiology , Models, Biological , Phenotype , Photoperiod , Phylogeny , Phytoplasma/physiology , Plant Development , Plant Shoots/growth & development , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Reproduction , Nicotiana , Transcription Factors/metabolism , Transcription, Genetic
17.
Cell ; 184(13): 3528-3541.e12, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33984278

ABSTRACT

Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Disease Resistance/immunology , Plant Immunity , Signal Transduction , Animals , Cell Death , Cell Membrane/metabolism , Cell Membrane Permeability , Glutamic Acid/metabolism , Lipid Bilayers/metabolism , Oocytes/metabolism , Plant Cells/metabolism , Protein Multimerization , Protoplasts/metabolism , Reactive Oxygen Species/metabolism , Single Molecule Imaging , Vacuoles/metabolism , Xenopus
18.
Cell ; 182(5): 1072-1074, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888491

ABSTRACT

The plant immune response regulator NPR1 resides in either the nucleus or in cytoplasmic puncta, depending on levels of the plant hormone salicylic acid. NPR1 nuclear roles include pathogenesis response (PR) gene regulation. In this issue of Cell, Zavaliev et al. determine that cytoplasmic NPR1-containing assemblies are consistent with multi-component protein condensates with roles to promote cell survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Survival , Gene Expression Regulation, Plant , Plant Immunity
19.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32810437

ABSTRACT

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Survival/immunology , Plant Immunity/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Ubiquitination/immunology
20.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32841601

ABSTRACT

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Subject(s)
Cell Membrane/immunology , Chloroplasts/immunology , Plant Diseases/immunology , Plant Immunity/immunology , Signal Transduction/immunology , Arabidopsis Proteins/immunology , Host-Pathogen Interactions/immunology , Salicylic Acid/immunology , Virulence/immunology
SELECTION OF CITATIONS
SEARCH DETAIL