Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.820
Filter
Add more filters

Publication year range
1.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214472

ABSTRACT

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Cell ; 184(15): 3998-4015.e19, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34157302

ABSTRACT

Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.


Subject(s)
CTLA-4 Antigen/metabolism , Feedback, Physiological , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigen-Presenting Cells/immunology , CD28 Antigens/metabolism , Cell Proliferation , Dendritic Cells/immunology , Green Fluorescent Proteins/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Interleukin-2/metabolism , Ligands , Lymph Nodes/metabolism , Lymphocyte Activation/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Neoplasms/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tumor Microenvironment
3.
Nat Immunol ; 23(9): 1365-1378, 2022 09.
Article in English | MEDLINE | ID: mdl-35999394

ABSTRACT

CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.


Subject(s)
Antigens, CD , CD28 Antigens , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , B7-1 Antigen , B7-2 Antigen/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen/genetics , Cell Adhesion Molecules , Ligands , Lymphocyte Activation
4.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354704

ABSTRACT

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Subject(s)
CD28 Antigens , Gene Regulatory Networks , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , CD28 Antigens/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , CD27 Ligand/genetics , CD27 Ligand/metabolism , CD8-Positive T-Lymphocytes
5.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354702

ABSTRACT

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Subject(s)
Autoimmune Diseases , CD28 Antigens , Humans , CD28 Antigens/metabolism , Friends , T-Lymphocytes , CTLA-4 Antigen/metabolism , Immunotherapy , B7-1 Antigen/metabolism , Immunoglobulins/metabolism , Butyrophilins/metabolism , Antigens, CD/metabolism
6.
Nat Immunol ; 21(10): 1244-1255, 2020 10.
Article in English | MEDLINE | ID: mdl-32747817

ABSTRACT

Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.


Subject(s)
Abatacept/therapeutic use , CD28 Antigens/metabolism , Diabetes Mellitus, Type 1/immunology , Germinal Center/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , T-Lymphocytes, Helper-Inducer/immunology , Abatacept/pharmacology , Animals , Biomarkers, Pharmacological , CD28 Antigens/genetics , Cells, Cultured , Computational Biology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/therapy , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/pharmacology , Inducible T-Cell Co-Stimulator Protein/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Treatment Outcome
7.
Nat Immunol ; 21(11): 1346-1358, 2020 11.
Article in English | MEDLINE | ID: mdl-32868929

ABSTRACT

Immune checkpoint blockade has provided a paradigm shift in cancer therapy, but the success of this approach is very variable; therefore, biomarkers predictive of clinical efficacy are urgently required. Here, we show that the frequency of PD-1+CD8+ T cells relative to that of PD-1+ regulatory T (Treg) cells in the tumor microenvironment can predict the clinical efficacy of programmed cell death protein 1 (PD-1) blockade therapies and is superior to other predictors, including PD ligand 1 (PD-L1) expression or tumor mutational burden. PD-1 expression by CD8+ T cells and Treg cells negatively impacts effector and immunosuppressive functions, respectively. PD-1 blockade induces both recovery of dysfunctional PD-1+CD8+ T cells and enhanced PD-1+ Treg cell-mediated immunosuppression. A profound reactivation of effector PD-1+CD8+ T cells rather than PD-1+ Treg cells by PD-1 blockade is necessary for tumor regression. These findings provide a promising predictive biomarker for PD-1 blockade therapies.


Subject(s)
Gene Expression Regulation/drug effects , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Antigens/chemistry , Antigens/immunology , Biomarkers, Tumor , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunomodulation , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasm Staging , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/mortality , Peptides/chemistry , Peptides/immunology , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/drug effects , Treatment Outcome , Tumor Microenvironment/immunology
8.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37160118

ABSTRACT

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Mice , Animals , CD28 Antigens/metabolism , Antigens, CD/metabolism , Ligands , Synaptic Membranes/metabolism , B7-2 Antigen , Membrane Glycoproteins/metabolism , B7-1 Antigen/metabolism , Cell Adhesion Molecules , Lymphocyte Activation
9.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28919076

ABSTRACT

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Subject(s)
CD28 Antigens/metabolism , Lymphocyte Activation , Mitochondria/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Carnitine O-Palmitoyltransferase , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Humans , Interleukin-15/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Stress, Physiological , T-Lymphocytes/metabolism
10.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263569

ABSTRACT

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Antigens, Differentiation, T-Lymphocyte/metabolism , CD28 Antigens/metabolism , Humans , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism
11.
Immunity ; 54(12): 2772-2783.e5, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788602

ABSTRACT

Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.


Subject(s)
Dendritic Cells/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Plasma Cells/immunology , Animals , Antibodies, Neutralizing/metabolism , B7-1 Antigen/metabolism , CD28 Antigens/metabolism , Cell Self Renewal , Cell Survival , Cells, Cultured , Female , Immunity, Humoral , Immunologic Memory , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice , Mice, Knockout
12.
Immunity ; 54(12): 2784-2794.e6, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34626548

ABSTRACT

Self-reactive B cell progenitors are eliminated through central tolerance checkpoints, a process thought to be restricted to the bone marrow in mammals. Here, we identified a consecutive trajectory of B cell development in the meninges of mice and non-human primates. The meningeal B cells were located predominantly at the dural sinuses, where endothelial cells expressed essential niche factors to support B cell development. Parabiosis experiments together with lineage tracing showed that meningeal developing B cells were replenished continuously from hematopoietic stem cell (HSC)-derived progenitors via a circulation-independent route. Autoreactive immature B cells that recognized myelin oligodendrocyte glycoprotein (MOG), a central nervous system-specific antigen, were eliminated specifically from the meninges. Furthermore, genetic deletion of the Mog gene restored the self-reactive B cell population in the meninges. These findings identify the meninges as a distinct reservoir for B cell development, allowing in situ negative selection to ensure a locally non-self-reactive immune repertoire.


Subject(s)
Dendritic Cells/immunology , Hematopoietic Stem Cells/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Meninges/immunology , Plasma Cells/immunology , Animals , Antibodies, Neutralizing/metabolism , B7-1 Antigen/metabolism , CD28 Antigens/metabolism , Cell Self Renewal , Cell Survival , Cells, Cultured , Humans , Immunity, Humoral , Immunologic Memory , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice , Mice, Inbred C57BL
13.
Immunity ; 52(2): 313-327.e7, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32049052

ABSTRACT

T cell responses upon infection display a remarkably reproducible pattern of expansion, contraction, and memory formation. If the robustness of this pattern builds entirely on signals derived from other cell types or if activated T cells themselves contribute to the orchestration of these population dynamics-akin to bacterial quorum regulation-is unclear. Here, we examined this question using time-lapse microscopy, genetic perturbation, bioinformatic predictions, and mathematical modeling. We found that ICAM-1-mediated cell clustering enabled CD8+ T cells to collectively regulate the balance between proliferation and apoptosis. Mechanistically, T cell expressed CD80 and CD86 interacted with the receptors CD28 and CTLA-4 on neighboring T cells; these interactions fed two nested antagonistic feedback circuits that regulated interleukin 2 production in a manner dependent on T cell density as confirmed by in vivo modulation of this network. Thus, CD8+ T cell-population-intrinsic mechanisms regulate cellular behavior, thereby promoting robustness of population dynamics.


Subject(s)
CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/metabolism , Animals , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Communication , Cell Count , Cell Line , Cell Survival , Cell Tracking , Dendritic Cells/immunology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-2/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Theoretical
14.
Cell ; 159(4): 814-28, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417158

ABSTRACT

Mechanisms for human memory T cell differentiation and maintenance have largely been inferred from studies of peripheral blood, though the majority of T cells are found in lymphoid and mucosal sites. We present here a multidimensional, quantitative analysis of human T cell compartmentalization and maintenance over six decades of life in blood, lymphoid, and mucosal tissues obtained from 56 individual organ donors. Our results reveal that the distribution and tissue residence of naive, central, and effector memory, and terminal effector subsets is contingent on both their differentiation state and tissue localization. Moreover, T cell homeostasis driven by cytokine or TCR-mediated signals is different in CD4+ or CD8+ T cell lineages, varies with their differentiation stage and tissue localization, and cannot be inferred from blood. Our data provide an unprecedented spatial and temporal map of human T cell compartmentalization and maintenance, supporting distinct pathways for human T cell fate determination and homeostasis.


Subject(s)
Aging/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , CD28 Antigens/metabolism , Cell Differentiation , Child , Child, Preschool , Humans , Interleukin-7 Receptor alpha Subunit/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Middle Aged , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Antigen, T-Cell/chemistry , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism , Tissue Donors , Young Adult
15.
Immunity ; 51(6): 1059-1073.e9, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757674

ABSTRACT

Combined immunotherapy targeting the immune checkpoint receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1), or CTLA-4 and the PD-1 ligand (PD-L1) exhibits superior anti-tumor responses compared with single-agent therapy. Here, we examined the molecular basis for this synergy. Using reconstitution assays with fluorescence readouts, we found that PD-L1 and the CTLA-4 ligand CD80 heterodimerize in cis but not trans. Quantitative biochemistry and cell biology assays revealed that PD-L1:CD80 cis-heterodimerization inhibited both PD-L1:PD-1 and CD80:CTLA-4 interactions through distinct mechanisms but preserved the ability of CD80 to activate the T cell co-stimulatory receptor CD28. Furthermore, PD-L1 expression on antigen-presenting cells (APCs) prevented CTLA-4-mediated trans-endocytosis of CD80. Atezolizumab (anti-PD-L1), but not anti-PD-1, reduced cell surface expression of CD80 on APCs, and this effect was negated by co-blockade of CTLA-4 with ipilimumab (anti-CTLA-4). Thus, PD-L1 exerts an immunostimulatory effect by repressing the CTLA-4 axis; this has implications to the synergy of anti-PD-L1 and anti-CTLA-4 combination therapy.


Subject(s)
B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , HEK293 Cells , Humans , Immunotherapy/methods , Ipilimumab/pharmacology , Jurkat Cells , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction/drug effects , Signal Transduction/immunology
16.
Nature ; 603(7900): 328-334, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35197632

ABSTRACT

Effective antitumour immunity depends on the orchestration of potent T cell responses against malignancies1. Regression of human cancers has been induced by immune checkpoint inhibitors, T cell engagers or chimeric antigen receptor T cell therapies2-4. Although CD8 T cells function as key effectors of these responses, the role of CD4 T cells beyond their helper function has not been defined. Here we demonstrate that a trispecific antibody to HER2, CD3 and CD28 stimulates regression of breast cancers in a humanized mouse model through a mechanism involving CD4-dependent inhibition of tumour cell cycle progression. Although CD8 T cells directly mediated tumour lysis in vitro, CD4 T cells exerted antiproliferative effects by blocking cancer cell cycle progression at G1/S. Furthermore, when T cell subsets were adoptively transferred into a humanized breast cancer tumour mouse model, CD4 T cells alone inhibited HER2+ breast cancer growth in vivo. RNA microarray analysis revealed that CD4 T cells markedly decreased tumour cell cycle progression and proliferation, and also increased pro-inflammatory signalling pathways. Collectively, the trispecific antibody to HER2 induced T cell-dependent tumour regression through direct antitumour and indirect pro-inflammatory/immune effects driven by CD4 T cells.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Female , Humans , Mice , Receptor, ErbB-2/genetics
17.
Nat Immunol ; 16(11): 1195-203, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26390157

ABSTRACT

Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxß as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation.


Subject(s)
Isoenzymes/metabolism , Protein Kinase C/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Animals , Binding Sites , CD28 Antigens/metabolism , Cell Differentiation , Cells, Cultured , Filamins/metabolism , HEK293 Cells , Humans , Immunological Synapses/metabolism , Isoenzymes/chemistry , Isoenzymes/deficiency , Isoenzymes/genetics , Jurkat Cells , Lymphocyte Activation , Lysine/chemistry , Mice , Mice, Knockout , Mutagenesis, Site-Directed , Protein Inhibitors of Activated STAT/metabolism , Protein Kinase C/chemistry , Protein Kinase C/deficiency , Protein Kinase C/genetics , Protein Kinase C-theta , Signal Transduction , Sumoylation , T-Lymphocytes/cytology , Th2 Cells/cytology , Th2 Cells/enzymology , Th2 Cells/immunology
18.
Nat Immunol ; 15(5): 473-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24633226

ABSTRACT

Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with the signal strength of the T cell antigen receptor (TCR) and required the coreceptor CD28 and the kinase TAK1. The neutralization of ligands that are members of the TNF superfamily (TNFSF) diminished the development of Treg cells. Conversely, TNFRSF agonists enhanced the differentiation of Treg cell progenitors by augmenting responsiveness of the interleukin 2 receptor (IL-2R) and transcription factor STAT5. Costimulation with the ligand of GITR elicited dose-dependent enrichment for cells of lower TCR affinity in the Treg cell repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated the development of Treg cells. Thus, expression of members of the TNFRSF on Treg cell progenitors translated strong TCR signals into molecular parameters that specifically promoted the development of Treg cells and shaped the Treg cell repertoire.


Subject(s)
Receptor Cross-Talk , Receptors, Antigen, T-Cell/agonists , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Animals , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Glucocorticoid-Induced TNFR-Related Protein/genetics , Glucocorticoid-Induced TNFR-Related Protein/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor Cross-Talk/immunology , Receptors, OX40/genetics , Receptors, OX40/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
19.
Blood ; 143(2): 139-151, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37616575

ABSTRACT

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/metabolism , CD28 Antigens/metabolism , T-Lymphocytes , B-Cell Maturation Antigen/metabolism , Neoplasm Recurrence, Local/metabolism
20.
J Immunol ; 212(2): 245-257, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38047900

ABSTRACT

CD8 T cells are emerging as important mediators in atherosclerosis and cardiovascular disease (CVD). Immune activation may play a particular role in people with HIV (PWH) who are at an increased risk of CVD, even after controlling for known CVD risk factors. Latent CMV infection is associated with increased CVD risk for both PWH and people without HIV, and human CMV-specific CD4 and CD8 T cells are enriched for an immunosenescent phenotype. We previously showed that CMV coinfection in PWH promotes vascular homing and activation of inflammatory CD4 T cells through the CD2-LFA-3 axis. However, the role of CD2/LFA3 costimulation of CD8 T cells in PWH with CMV has yet to be described. In the present study, we demonstrate that CD2 expression on CX3CR1+CD57+CD28- inflammescent CD8 T cells is increased on cells from CMV-seropositive PWH. In vitro CD2/LFA-3 costimulation enhances TCR-mediated activation of these inflammatory CD8 memory T cells. Finally, we show that LFA-3 is highly expressed in aortas of SIV-infected rhesus macaques and in atherosclerotic plaques of people without HIV. Our findings are consistent with a model in which CMV infection enhances CD2 expression on highly proinflammatory CD8 T cells that can then be stimulated by LFA-3 expressed in the vasculature, even in the absence of CD28 costimulation. This model, in which CMV infection exacerbates toxic cytokine and granzyme production by CD8 T cells within the vasculature, highlights a potential therapeutic target in atherosclerosis development and progression, especially for PWH.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Cytomegalovirus Infections , HIV Infections , Animals , Humans , CD28 Antigens/metabolism , HIV Infections/drug therapy , Cytomegalovirus , CD58 Antigens/metabolism , Macaca mulatta , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Atherosclerosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL