Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.388
Filter
Add more filters

Publication year range
1.
Cell ; 184(4): 969-982.e13, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571427

ABSTRACT

Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.


Subject(s)
Ion Channels/metabolism , Iron/metabolism , Black or African American , Aging/metabolism , Alleles , Animals , Cohort Studies , Erythrocyte Count , Erythropoiesis , Gain of Function Mutation/genetics , Hepatocytes/metabolism , Hepcidins/blood , Hepcidins/metabolism , Humans , Iron/blood , Iron Overload/metabolism , Macrophages/metabolism , Mechanotransduction, Cellular , Mice, Inbred C57BL , Phagocytosis , Phenotype , Stress, Physiological
2.
Cell ; 183(2): 490-502.e18, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33002410

ABSTRACT

The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , A549 Cells , Animals , Child , Child, Preschool , Female , Gain of Function Mutation/genetics , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , MAP Kinase Signaling System/physiology , Male , Mice , Mouse Embryonic Stem Cells , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction , src Homology Domains/genetics
3.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002796

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Subject(s)
Gain of Function Mutation/genetics , Obesity/pathology , Receptor, Melanocortin, Type 4/genetics , Signal Transduction , Adult , Aged , Body Mass Index , Coronary Artery Disease/complications , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Cyclic AMP/metabolism , Databases, Factual , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4/chemistry , Receptor, Melanocortin, Type 4/metabolism , beta-Arrestins/metabolism
4.
Cell ; 175(1): 40-42, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241614

ABSTRACT

Although there is much focus on the impact of mutations on structured protein domains, less is known about their impact on unstructured regions. In this issue, Meyer et al. demonstrate that mutations resulting in the emergence of new short linear peptide motifs within intrinsically disordered protein regions can cause human genetic diseases by gain of function.


Subject(s)
Gain of Function Mutation , Peptides , Humans , Mutation
5.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36446385

ABSTRACT

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Subject(s)
Autoimmune Diseases , Leukemia, Large Granular Lymphocytic , Animals , Mice , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD8-Positive T-Lymphocytes , Gain of Function Mutation , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/pathology , Mutation , NK Cell Lectin-Like Receptor Subfamily K/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Mol Cell ; 83(5): 655-656, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868187

ABSTRACT

Loss-of-function mutations in SPOP E3 ubiquitin ligase drive multiple cancers. However, carcinogenic gain-of-function SPOP mutations have been a major puzzle. In this issue of Molecular Cell, Cuneo et al.1 show that several mutations map to SPOP oligomerization interfaces. Additional questions remain about SPOP mutations in malignancy.


Subject(s)
Carcinogenesis , Carcinogens , Nuclear Proteins , Repressor Proteins , Humans , Cryoelectron Microscopy , Loss of Function Mutation , Nuclear Proteins/genetics , Repressor Proteins/genetics , Gain of Function Mutation
7.
Nature ; 625(7996): 805-812, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093011

ABSTRACT

CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.


Subject(s)
Alleles , Gene Editing , Mutagenesis , T-Lymphocytes , Humans , Amino Acids/genetics , CRISPR-Cas Systems/genetics , Mutagenesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Cytokines/biosynthesis , Cytokines/metabolism , Gain of Function Mutation , Loss of Function Mutation
8.
Nature ; 626(7997): 151-159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233525

ABSTRACT

Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.


Subject(s)
Enhancer Elements, Genetic , Extremities , Polydactyly , Proto-Oncogene Proteins c-ets , Humans , Enhancer Elements, Genetic/genetics , Extremities/embryology , Extremities/pathology , Gain of Function Mutation , Homeodomain Proteins/metabolism , Interferon Regulatory Factors/metabolism , Organ Specificity/genetics , Penetrance , Phenotype , Polydactyly/embryology , Polydactyly/genetics , Polydactyly/pathology , Polymorphism, Single Nucleotide , Protein Binding , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factor AP-1/metabolism
9.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32750333

ABSTRACT

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Subject(s)
Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Janus Kinase 1/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Adolescent , COVID-19/mortality , Catalytic Domain/genetics , Cell Line , Cytokines/metabolism , Female , Gain of Function Mutation/genetics , Genotype , HEK293 Cells , Hereditary Autoinflammatory Diseases/drug therapy , Humans , Janus Kinase 1/antagonists & inhibitors , Mosaicism , Piperidines/therapeutic use , Precision Medicine/methods , Pyrimidines/therapeutic use , Signal Transduction/immunology , Systemic Inflammatory Response Syndrome/drug therapy
10.
Nature ; 623(7988): 772-781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968388

ABSTRACT

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Subject(s)
Developmental Disabilities , Embryo, Mammalian , Mutation , Phenotype , Single-Cell Gene Expression Analysis , Animals , Mice , Cell Nucleus/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Gain of Function Mutation , Genotype , Loss of Function Mutation , Models, Genetic , Disease Models, Animal
11.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
12.
Genes Dev ; 35(21-22): 1527-1547, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34711655

ABSTRACT

Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.


Subject(s)
Human Embryonic Stem Cells , Cell Differentiation/genetics , Embryonic Stem Cells , Gain of Function Mutation , Germ Layers , Humans
13.
Nature ; 605(7909): 349-356, 2022 05.
Article in English | MEDLINE | ID: mdl-35477763

ABSTRACT

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Subject(s)
Gain of Function Mutation , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Animals , Autoimmunity/genetics , B-Lymphocytes , Cyclic GMP/analogs & derivatives , Guanosine , Humans , Lupus Erythematosus, Systemic/genetics , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
14.
Mol Cell ; 80(4): 712-725.e5, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33058778

ABSTRACT

SWI/SNF-family remodelers (BAF/PBAF in mammals) are essential chromatin regulators, and mutations in human BAF/PBAF components are associated with ∼20% of cancers. Cancer-associated missense mutations in human BRG1 (encoding the catalytic ATPase) have been characterized previously as conferring loss-of-function. Here, we show that cancer-associated missense mutations in BRG1, when placed into the orthologous Sth1 ATPase of the yeast RSC remodeler, separate into two categories: loss-of-function enzymes, or instead, gain-of-function enzymes that greatly improve DNA translocation efficiency and nucleosome remodeling in vitro. Our work identifies a structural "hub," formed by the association of several Sth1 domains, that regulates ATPase activity and DNA translocation efficiency. Remarkably, all gain-of-function cancer-associated mutations and all loss-of-function mutations physically localize to distinct adjacent regions in the hub, which specifically regulate and implement DNA translocation, respectively. In vivo, only gain-of-function cancer-associated mutations conferred precocious chromatin accessibility. Taken together, we provide a structure-function mechanistic basis for cancer-associated hyperactivity.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Gain of Function Mutation , Neoplasms/pathology , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Neoplasms/genetics , Nuclear Proteins/genetics , Nucleosomes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Translocation, Genetic
15.
Immunol Rev ; 322(1): 81-97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084635

ABSTRACT

Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.


Subject(s)
Aneurysm , Candidiasis, Chronic Mucocutaneous , Humans , Candidiasis, Chronic Mucocutaneous/diagnosis , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/therapy , Gain of Function Mutation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Research
16.
Annu Rev Neurosci ; 42: 227-247, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30909783

ABSTRACT

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.


Subject(s)
DNA Repeat Expansion/genetics , Nerve Tissue Proteins/genetics , Nervous System Diseases/genetics , Protein Biosynthesis , Codon, Initiator/genetics , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/physiology , Gain of Function Mutation , Genetic Code , Humans , Loss of Function Mutation , Microsatellite Repeats/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcription, Genetic
17.
N Engl J Med ; 391(4): 334-342, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39018528

ABSTRACT

KRAS gain-of-function mutations are frequently observed in sporadic arteriovenous malformations. The mechanisms underlying the progression of such KRAS-driven malformations are still incompletely understood, and no treatments for the condition are approved. Here, we show the effectiveness of sotorasib, a specific KRAS G12C inhibitor, in reducing the volume of vascular malformations and improving survival in two mouse models carrying a mosaic Kras G12C mutation. We then administered sotorasib to two adult patients with severe KRAS G12C-related arteriovenous malformations. Both patients had rapid reductions in symptoms and arteriovenous malformation size. Targeting KRAS G12C appears to be a promising therapeutic approach for patients with KRAS G12C-related vascular malformations. (Funded by the European Research Council and others.).


Subject(s)
Arteriovenous Malformations , Proto-Oncogene Proteins p21(ras) , Animals , Female , Humans , Male , Mice , Middle Aged , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/drug therapy , Arteriovenous Malformations/genetics , Disease Models, Animal , Gain of Function Mutation , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/therapeutic use , Pyrimidines , Cardiovascular Agents/therapeutic use , Young Adult
18.
Trends Immunol ; 45(2): 138-153, 2024 02.
Article in English | MEDLINE | ID: mdl-38238227

ABSTRACT

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Subject(s)
Hypersensitivity , Lymphoma , Humans , Gain of Function Mutation , Hypersensitivity/genetics , Gene Expression Regulation , Germ Cells , STAT6 Transcription Factor/genetics
19.
Immunity ; 49(1): 66-79.e5, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29980436

ABSTRACT

Genetic mutations of CARD14 (encoding CARMA2) are observed in psoriasis patients. Here we showed that Card14E138A/+ and Card14ΔQ136/+ mice developed spontaneous psoriasis-like skin inflammation, which resulted from constitutively activated CARMA2 via self-aggregation leading to the enhanced activation of the IL-23-IL-17A cytokine axis. Card14-/- mice displayed attenuated skin inflammation in the imiquimod-induced psoriasis model due to impaired IL-17A signaling in keratinocytes. CARMA2, mainly expressed in keratinocytes, associates with the ACT1-TRAF6 signaling complex and mediates IL-17A-induced NF-κB and MAPK signaling pathway activation, which leads to expression of pro-inflammatory factors. Thus, CARMA2 serves as a key mediator of IL-17A signaling and its constitutive activation in keratinocytes leads to the onset of psoriasis, which indicates an important role of NF-κB activation in keratinocytes in psoriatic initiation.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Dermatitis/genetics , Gain of Function Mutation , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , Interleukin-17/metabolism , Keratinocytes/metabolism , Psoriasis/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/deficiency , Cell Line , Cytokines/genetics , Cytokines/metabolism , Dermatitis/physiopathology , Gene Expression Regulation/drug effects , Guanylate Kinases/chemistry , Guanylate Kinases/deficiency , HEK293 Cells , Humans , Imiquimod , Keratinocytes/pathology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Psoriasis/chemically induced , Psoriasis/physiopathology , Signal Transduction , T-Lymphocyte Subsets/metabolism , TNF Receptor-Associated Factor 6/metabolism
20.
Nature ; 591(7850): 431-437, 2021 03.
Article in English | MEDLINE | ID: mdl-33505021

ABSTRACT

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Potassium Channels/metabolism , Potassium/metabolism , Animals , Biocatalysis , Dopaminergic Neurons/metabolism , Female , Gain of Function Mutation , HEK293 Cells , Humans , Loss of Function Mutation , Male , Mice , Mice, Knockout , Motor Skills , Multiprotein Complexes/chemistry , Multiprotein Complexes/deficiency , Multiprotein Complexes/genetics , Parkinson Disease/genetics , Potassium Channels/chemistry , Potassium Channels/deficiency , Potassium Channels/genetics , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL