Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.598
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 157-191, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29237128

ABSTRACT

In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.


Subject(s)
Host-Pathogen Interactions/immunology , Mycoses/immunology , Mycoses/microbiology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/immunology , Adaptive Immunity , Animals , Disease Susceptibility , Fungal Vaccines/immunology , Fungi/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunity, Innate , Immunocompromised Host , Immunotherapy , Mycoses/prevention & control , Mycoses/therapy , Signal Transduction
2.
Immunity ; 54(5): 856-858, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979584

ABSTRACT

Intestinal microbiome perturbation characterizes Crohn's disease (CD), though specific contributors to pathophysiology remain elusive. In a recent issue of Science, Jain et al. show that Debaryomyces hansenii impairs intestinal healing in mice via effects on type I interferon signaling and chemokine CCL5 expression in macrophages and that it is also prevalent in the inflamed mucosa of CD patients.


Subject(s)
Crohn Disease/immunology , Crohn Disease/microbiology , Intestinal Mucosa/microbiology , Wound Healing/immunology , Animals , Chemokine CCL5/immunology , Gastrointestinal Microbiome/immunology , Humans , Interferon Type I/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Mice , Mycoses/immunology , Mycoses/microbiology , Saccharomycetales/immunology , Signal Transduction/immunology
3.
Nature ; 631(8020): 344-349, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926575

ABSTRACT

Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.


Subject(s)
Anura , Chytridiomycota , Disease Resistance , Endangered Species , Mycoses , Refugium , Animals , Anura/immunology , Anura/microbiology , Anura/physiology , Body Temperature/immunology , Body Temperature/physiology , Body Temperature/radiation effects , Chytridiomycota/immunology , Chytridiomycota/pathogenicity , Chytridiomycota/physiology , Disease Resistance/immunology , Disease Resistance/physiology , Disease Resistance/radiation effects , Ecosystem , Mycoses/veterinary , Mycoses/microbiology , Mycoses/immunology , Sunlight , Animals, Wild/immunology , Animals, Wild/microbiology , Animals, Wild/physiology , Introduced Species
4.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938782

ABSTRACT

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Subject(s)
Antifungal Agents , Kidney , Polyenes , Sterols , Animals , Humans , Mice , Amphotericin B/analogs & derivatives , Amphotericin B/chemistry , Amphotericin B/toxicity , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Cells, Cultured , Cholesterol/chemistry , Cholesterol/metabolism , Drug Resistance, Fungal , Ergosterol/chemistry , Ergosterol/metabolism , Kidney/drug effects , Kinetics , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Polyenes/chemistry , Polyenes/metabolism , Polyenes/pharmacology , Serial Passage , Sterols/chemistry , Sterols/metabolism , Time Factors
5.
Proc Natl Acad Sci U S A ; 121(4): e2317928121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236738

ABSTRACT

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


Subject(s)
Chytridiomycota , Mycoses , Animals , Batrachochytrium , Chytridiomycota/genetics , Anura , Amphibians/microbiology , Mycoses/microbiology , Transformation, Genetic
6.
Annu Rev Microbiol ; 75: 673-693, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34351790

ABSTRACT

Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections.


Subject(s)
Chytridiomycota , Mycoses , Amphibians/microbiology , Animals , Mycoses/microbiology , Mycoses/veterinary , Virulence
7.
Proc Natl Acad Sci U S A ; 120(2): e2212633120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595674

ABSTRACT

The origins and evolution of virulence in amphibian-infecting chytrids Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are largely unknown. Here, we use deep nanopore sequencing of Bsal and comparative genomics against 21 high-quality genome assemblies that span the fungal Chytridiomycota. We discover that Bsal has the most repeat-rich genome of the Chytridiomycota, comprising 40.9% repetitive elements; this genome has expanded to more than 3× the length of its conspecific Bd, with autonomous and fully functional LTR/Gypsy elements contributing significantly to the expansion. The M36 metalloprotease virulence factors are highly expanded (n = 177) in Bsal, most of which (53%) are flanked by transposable elements, suggesting they have a repeat-associated expansion. We find enrichment upstream of M36 metalloprotease genes of three novel repeat families belonging to the repeat superfamily of LINEs that are implicated with gene copy number variations. Additionally, Bsal has a highly compartmentalized genome architecture, with virulence factors enriched in gene-sparse/repeat-rich compartments, while core conserved genes are enriched in gene-rich/repeat-poor compartments. Genes upregulated during infection are primarily found in the gene-sparse/repeat-rich compartment in both Bd and Bsal. Furthermore, genes with signatures of positive selection in Bd are enriched in repeat-rich regions, suggesting these regions are a cradle for the evolution of chytrid pathogenicity. These are the hallmarks of two-speed genome evolution, and this study provides evidence of two-speed genomes in an animal pathogen, shedding light on the evolution of fungal pathogens of vertebrates driving global declines and extinctions.


Subject(s)
Chytridiomycota , Mycoses , Animals , Virulence/genetics , Mycoses/veterinary , Mycoses/microbiology , DNA Copy Number Variations , Amphibians/microbiology , Chytridiomycota/genetics , Virulence Factors , Evolution, Molecular
8.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38294218

ABSTRACT

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal
9.
Clin Microbiol Rev ; 37(2): e0000423, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38551323

ABSTRACT

SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.


Subject(s)
Antifungal Agents , Scedosporium , Humans , Antifungal Agents/therapeutic use , Scedosporium/drug effects , Scedosporium/classification , Drug Resistance, Fungal , Mycoses/drug therapy , Mycoses/diagnosis , Mycoses/microbiology , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/diagnosis , Ascomycota/classification , Ascomycota/drug effects
11.
Ecol Lett ; 27(5): e14431, 2024 May.
Article in English | MEDLINE | ID: mdl-38712705

ABSTRACT

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Subject(s)
Batrachochytrium , Host-Pathogen Interactions , Animals , Batrachochytrium/genetics , Batrachochytrium/physiology , Anura/microbiology , Amphibians/microbiology , Mycoses/veterinary , Mycoses/microbiology , Adaptation, Physiological , Phylogeny
12.
Emerg Infect Dis ; 30(5): 1000-1003, 2024 May.
Article in English | MEDLINE | ID: mdl-38666639

ABSTRACT

We describe the detection of Paranannizziopsis sp. fungus in a wild population of vipers in Europe. Fungal infections were severe, and 1 animal likely died from infection. Surveillance efforts are needed to better understand the threat of this pathogen to snake conservation.


Subject(s)
Mycoses , Viperidae , Animals , Europe/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Animals, Wild/microbiology
13.
Emerg Infect Dis ; 30(6): 1077-1087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781681

ABSTRACT

Scedosporium spp. and Lomentospora prolificans are emerging non-Aspergillus filamentous fungi. The Scedosporiosis/lomentosporiosis Observational Study we previously conducted reported frequent fungal vascular involvement, including aortitis and peripheral arteritis. For this article, we reviewed 7 cases of Scedosporium spp. and L. prolificans arteritis from the Scedosporiosis/lomentosporiosis Observational Study and 13 cases from published literature. Underlying immunosuppression was reported in 70% (14/20) of case-patients, mainly those who had solid organ transplants (10/14). Osteoarticular localization of infection was observed in 50% (10/20) of cases; infections were frequently (7/10) contiguous with vascular infection sites. Scedosporium spp./Lomentospora prolificans infections were diagnosed in 9 of 20 patients ≈3 months after completing treatment for nonvascular scedosporiosis/lomentosporiosis. Aneurysms were found in 8/11 aortitis and 6/10 peripheral arteritis cases. Invasive fungal disease--related deaths were high (12/18 [67%]). The vascular tropism of Scedosporium spp. and L. prolificans indicates vascular imaging, such as computed tomography angiography, is needed to manage infections, especially for osteoarticular locations.


Subject(s)
Mycoses , Scedosporium , Humans , Scedosporium/isolation & purification , France/epidemiology , Male , Middle Aged , Aged , Female , Mycoses/microbiology , Mycoses/epidemiology , Mycoses/diagnosis , Adult , Antifungal Agents/therapeutic use , Aged, 80 and over , Invasive Fungal Infections
14.
Emerg Infect Dis ; 30(6): 1232-1235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782016

ABSTRACT

A 3-year-old patient in India experiencing headaches and seizures was diagnosed with a fungal infection, initially misidentified as Cladophialophora bantiana. Follow-up sequencing identified the isolate to be Fonsecaea monophora fungus. This case demonstrates the use of molecular methods for the correct identification of F. monophora, an agent of fungal brain abscess.


Subject(s)
Ascomycota , Brain Abscess , Brain Abscess/microbiology , Brain Abscess/diagnosis , Brain Abscess/drug therapy , Humans , Ascomycota/isolation & purification , Ascomycota/genetics , Ascomycota/classification , Child, Preschool , Male , Mycoses/microbiology , Mycoses/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Phylogeny , DNA, Fungal/genetics
15.
J Clin Microbiol ; 62(5): e0174923, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38624235

ABSTRACT

The timely identification of microbial pathogens is essential to guide targeted antimicrobial therapy and ultimately, successful treatment of an infection. However, the yield of standard microbiology testing (SMT) is directly related to the duration of antecedent antimicrobial therapy as SMT culture methods are dependent on the recovery of viable organisms, the fastidious nature of certain pathogens, and other pre-analytic factors. In the last decade, metagenomic next-generation sequencing (mNGS) has been successfully utilized as a diagnostic tool for various applications within the clinical laboratory. However, mNGS is resource, time, and labor-intensive-requiring extensive laborious preliminary benchwork, followed by complex bioinformatic analysis. We aimed to address these shortcomings by developing a largely Automated targeted Metagenomic next-generation sequencing (tmNGS) PipeLine for rapId inFectIous disEase Diagnosis (AMPLIFIED) to detect bacteria and fungi directly from clinical specimens. Therefore, AMPLIFIED may serve as an adjunctive approach to complement SMT. This tmNGS pipeline requires less than 1 hour of hands-on time before sequencing and less than 2 hours of total processing time, including bioinformatic analysis. We performed tmNGS on 50 clinical specimens with concomitant cultures to assess feasibility and performance in the hospital laboratory. Of the 50 specimens, 34 (68%) were from true clinical infections. Specimens from cases of true infection were more often tmNGS positive compared to those from the non-infected group (82.4% vs 43.8%, respectively, P = 0.0087). Overall, the clinical sensitivity of AMPLIFIED was 54.6% with 85.7% specificity, equating to 70.6% and 75% negative and positive predictive values, respectively. AMPLIFIED represents a rapid supplementary approach to SMT; the typical time from specimen receipt to identification of potential pathogens by AMPLIFIED is roughly 24 hours which is markedly faster than the days, weeks, and months required to recover bacterial, fungal, and mycobacterial pathogens by culture, respectively. IMPORTANCE: To our knowledge, this represents the first application of an automated sequencing and bioinformatics pipeline in an exclusively pediatric population. Next-generation sequencing is time-consuming, labor-intensive, and requires experienced personnel; perhaps contributing to hesitancy among clinical laboratories to adopt such a test. Here, we report a strong case for use by removing these barriers through near-total automation of our sequencing pipeline.


Subject(s)
Bacteria , Bacterial Infections , Fungi , High-Throughput Nucleotide Sequencing , Metagenomics , Mycoses , Humans , High-Throughput Nucleotide Sequencing/methods , Fungi/genetics , Fungi/isolation & purification , Fungi/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Metagenomics/methods , Mycoses/diagnosis , Mycoses/microbiology , Automation, Laboratory/methods , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Time Factors , Computational Biology/methods , Male , Female , Child , Adolescent , Adult , Child, Preschool
16.
Int J Med Microbiol ; 314: 151615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394877

ABSTRACT

BACKGROUND: Talaromyces marneffei (T. marneffei) is a thermal dimorphic fungus, which can cause lung or blood stream infection in patients, often life-threatening. However, endocarditis caused by T. marneffei has not been reported. For elderly patients with implanted cardiac devices or artificial valves, the prevention and treatment of infective endocarditis should not be ignored. METHODS: This is a descriptive study of a T. marneffei endocarditis by joint detection of cardiac ultrasound examination, peripheral blood DNA metagenomics Next Generation Sequencing (mNGS), and in vitro culture. RESULTS: We describe an 80-year-old female patient with an unusual infection of T. marneffei endocarditis. After intravenous drip of 0.2 g voriconazole twice a day for antifungal treatment, the patient showed no signs of improvement and their family refused further treatment. CONCLUSION: Infective endocarditis is becoming more and more common in the elderly due to the widely use of invasive surgical procedures and implantation of intracardiac devices. The diagnosis and treatment of T. marneffei endocarditis is challenging because of its rarity. Here, we discussed a case of T. marneffei endocarditis, and emphasized the role of mNGS in early diagnosis, which is of great significance for treatment and survival rate of patients.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Mycoses , Talaromyces , Female , Humans , Aged , Aged, 80 and over , Mycoses/diagnosis , Mycoses/drug therapy , Mycoses/microbiology , High-Throughput Nucleotide Sequencing , Antifungal Agents/therapeutic use , Endocarditis/diagnosis , Endocarditis/drug therapy , Endocarditis/chemically induced
17.
Eur J Clin Microbiol Infect Dis ; 43(3): 597-604, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103075

ABSTRACT

Fungal infections due to Apiotrichum mycotoxinivorans are clinically rare. Here, we report a case of invasive blood and cerebrospinal fluid infection by Apiotrichum mycotoxinivorans in a girl with B-cell acute lymphoblastic leukemia. This is the first report of the isolation of Apiotrichum mycotoxinivorans from human cerebrospinal fluid. MRI features of meningitis caused by this fungus are presented. Three small isoquinoline alkaloids inhibited the growth of this rare fungus in vitro, providing a starting point for the application of natural products to treat this highly fatal fungal infection. Our case presentation confirms Apiotrichum mycotoxinivorans as a potential emerging pathogen in patients with hematological malignancy undergoing chemotherapy.


Subject(s)
Basidiomycota , Mycoses , Trichosporon , Female , Humans , Mycoses/microbiology , Cerebrospinal Fluid
18.
Med Mycol ; 62(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38379099

ABSTRACT

Burns can cause skin damage, facilitating the entry of fungi and other microorganisms into the body, leading to infections. Fusarium is a fungus capable of infecting individuals with burn injuries. Diagnosing and treating Fusarium infections in burn patients can be challenging due to the manifestation of nonspecific symptoms. This study aims to investigate case reports and case series from published literature describing Fusarium infection in burned patients, in order to assess treatment regimens, clinical outcomes, and make recommendations for future management. We conducted searches on Web of Science, PubMed, ScienceDirect, and Medline for all case reports and case series containing keywords 'Burn', 'Burns', 'Burned', 'Fusarium', or 'Fusariosis' in the title or abstract. All burn patients who developed Fusarium fungal infections between January 1974 and March 2023 were included in the study. Demographic and clinical data were analyzed retrospectivity. The final analysis incorporates 24 case reports encompassing a total of 87 burn patients with Fusarium infection. Patient ages ranged from one to 85 years, with the majority being male (53%). The median percentage of burn surface area was 78%, and the skin in the face, upper limbs, and lower limbs were the most commonly infected sites. Fungal infections appeared around 10 days after the burn injury on average. The majority of the patients were identified through culture or histopathology. The Fusarium dimerum species complex, which was found in nine patients, was the most frequently identified Fusarium species complex. Amphotericin B was the most preferred treatment drug, followed by voriconazole, and 62% of patients underwent debridement. In our study, 23 patients (37%) died from fungal infections. Implementing early and effective treatment protocols targeting Fusarium spp. in burn treatment units can significantly reduce mortality rates. It is critical to enhance the understanding of fusariosis epidemiology and emphasize the importance of maintaining a high clinical suspicion for this condition in burn patients.


Subject(s)
Burns , Fusariosis , Fusarium , Mycoses , Humans , Male , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Fusariosis/diagnosis , Fusariosis/drug therapy , Fusariosis/epidemiology , Fusariosis/veterinary , Mycoses/microbiology , Mycoses/veterinary , Voriconazole/therapeutic use , Burns/complications , Burns/therapy , Burns/veterinary , Antifungal Agents/therapeutic use
19.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38857886

ABSTRACT

Acrophialophora is implicated in superficial and invasive infections, especially in immunosuppressed individuals. The present study was undertaken to provide clinical, microbiological, phylogenetic, and antifungal susceptibility testing (AFST) profile of Acrophialophora isolated from India. All the isolates identified as Acrophialophora species at the National Culture Collection for Pathogenic Fungi, Chandigarh, India were revived. Phenotypic and molecular characterization was performed, followed by temperature studies, scanning electron microscopy (SEM), and AFST. We also performed systematic review of all the cases of Acrophialophora species reported till date. A total of nine isolates identified as Acrophialophora species were identified by molecular method as A. fusispora (n = 8) and A. levis (n = 1), from brain abscess (n = 4), respiratory tract (n = 3), and corneal scraping (n = 2). All patients but two had predisposing factors/co-morbidities. Acrophialophora was identified as mere colonizer in one. Temperature studies and SEM divulged variation between both species. Sequencing of the internal transcribed spacer ribosomal DNA and beta-tubulin loci could distinguish species, while the LSU ribosomal DNA locus could not. AFST showed the lowest minimum inhibitory concentrations (MICs) for triazoles and the highest for echinocandins. Systematic literature review revealed 16 cases (11 studies), with ocular infections, pulmonary and central nervous system infections, and A. fusispora was common species. All the patients except three responded well. High MICs were noted for fluconazole, micafungin, and caspofungin. This is the first study delineating clinical, phenotypic, and genotypic characteristics of Acrophialophora species from India. The study highlights microscopic differences between both species and emphasizes the role of molecular methods in precise identification. Triazoles appear to be the most effective antifungals for managing patients.


We describe clinical, phenotypic, and genotypic characteristics of Acrophialophora species. This species causes mild infection to fatal infection in immunosuppressed individuals. Triazoles are effective in treating such infections.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Mycoses , Phylogeny , India , Humans , Antifungal Agents/pharmacology , Adult , Male , Mycoses/microbiology , Female , Middle Aged , Ascomycota/drug effects , Ascomycota/genetics , Ascomycota/isolation & purification , Ascomycota/classification , DNA, Fungal/genetics , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Microscopy, Electron, Scanning , Phenotype , Tubulin/genetics , Aged , Young Adult , Child
20.
Med Mycol ; 62(6)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935909

ABSTRACT

The World Health Organization, in response to the growing burden of fungal disease, established a process to develop a fungal pathogen priority list. This systematic review aimed to evaluate the epidemiology and impact of infections caused by Talaromyces marneffei, Coccidioides species, and Paracoccidioides species. PubMed and Web of Sciences databases were searched to identify studies published between 1 January 2011 and 23 February 2021 reporting on mortality, complications and sequelae, antifungal susceptibility, preventability, annual incidence, and trends. Overall, 25, 17, and 6 articles were included for T. marneffei, Coccidioides spp. and Paracoccidioides spp., respectively. Mortality rates were high in those with invasive talaromycosis and paracoccidioidomycosis (up to 21% and 22.7%, respectively). Hospitalization was frequent in those with coccidioidomycosis (up to 84%), and while the duration was short (mean/median 3-7 days), readmission was common (38%). Reduced susceptibility to fluconazole and echinocandins was observed for T. marneffei and Coccidioides spp., whereas >88% of T. marneffei isolates had minimum inhibitory concentration values ≤0.015 µg/ml for itraconazole, posaconazole, and voriconazole. Risk factors for mortality in those with talaromycosis included low CD4 counts (odds ratio 2.90 when CD4 count <200 cells/µl compared with 24.26 when CD4 count <50 cells/µl). Outbreaks of coccidioidomycosis and paracoccidioidomycosis were associated with construction work (relative risk 4.4-210.6 and 5.7-times increase, respectively). In the United States of America, cases of coccidioidomycosis increased between 2014 and 2017 (from 8232 to 14 364/year). National and global surveillance as well as more detailed studies to better define sequelae, risk factors, outcomes, global distribution, and trends are required.


Subject(s)
Antifungal Agents , Coccidioides , Paracoccidioides , Talaromyces , World Health Organization , Talaromyces/isolation & purification , Talaromyces/classification , Talaromyces/drug effects , Humans , Paracoccidioides/isolation & purification , Paracoccidioides/drug effects , Paracoccidioides/classification , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Coccidioides/isolation & purification , Coccidioides/classification , Coccidioides/drug effects , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/mortality , Paracoccidioidomycosis/epidemiology , Paracoccidioidomycosis/microbiology , Paracoccidioidomycosis/drug therapy , Coccidioidomycosis/epidemiology , Coccidioidomycosis/microbiology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL