Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.016
Filter
Add more filters

Publication year range
1.
Cell ; 177(6): 1367, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150614

ABSTRACT

Transcription of viral mRNA in cells infected with influenza viruses involves capturing and cleaving the first 10-20 nucleotides of 5' capped host mRNAs to be used as primers in viral RNA synthesis. A newly developed inhibitor of the viral endonuclease responsible for this cap-snatching shows therapeutic efficacy for the treatment of influenza. To view this Bench to Bedside, open or download the PDF.


Subject(s)
Influenza, Human/drug therapy , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Thiepins/pharmacology , Thiepins/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use , Dibenzothiepins , Endonucleases/genetics , Humans , Morpholines , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Pyridones , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Viral Proteins/genetics
2.
EMBO J ; 40(11): e106771, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33909912

ABSTRACT

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.


Subject(s)
Fibroblasts/metabolism , Hydrogen Sulfide/metabolism , Syk Kinase/antagonists & inhibitors , Animals , Calcineurin/metabolism , Cells, Cultured , Cysteine/metabolism , Fibroblasts/drug effects , Glycine/metabolism , Mice , NFATC Transcription Factors/metabolism , Oxazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction
3.
PLoS Pathog ; 18(7): e1010698, 2022 07.
Article in English | MEDLINE | ID: mdl-35830486

ABSTRACT

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA-BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Thiepins , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dibenzothiepins , Drug Resistance, Viral/genetics , Endonucleases/metabolism , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Morpholines , Oxazines/pharmacology , Pyridines/pharmacology , Pyridones/pharmacology , Thiepins/pharmacology , Triazines , Viral Proteins/metabolism
4.
J Med Virol ; 96(5): e29678, 2024 May.
Article in English | MEDLINE | ID: mdl-38751128

ABSTRACT

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Subject(s)
Anti-Inflammatory Agents , Antiviral Agents , Disease Models, Animal , Orthomyxoviridae Infections , Oxazines , Syk Kinase , Animals , Humans , Syk Kinase/antagonists & inhibitors , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Imidazoles/pharmacology , Imidazoles/therapeutic use , Lung/pathology , Lung/virology , Lung/drug effects , Lung/immunology , A549 Cells , Influenza A virus/drug effects , Mice, Inbred BALB C , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/immunology , THP-1 Cells , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
PLoS Comput Biol ; 19(1): e1010797, 2023 01.
Article in English | MEDLINE | ID: mdl-36608108

ABSTRACT

To aid understanding of the effect of antiviral treatment on population-level influenza transmission, we used a novel pharmacokinetic-viral kinetic transmission model to test the correlation between nasal viral load and infectiousness, and to evaluate the impact that timing of treatment with the antivirals oseltamivir or baloxavir has on influenza transmission. The model was run under three candidate profiles whereby infectiousness was assumed to be proportional to viral titer on a natural-scale, log-scale, or dose-response model. Viral kinetic profiles in the presence and absence of antiviral treatment were compared for each individual (N = 1000 simulated individuals); subsequently, viral transmission mitigation was calculated. The predicted transmission mitigation was greater with earlier administration of antiviral treatment, and with baloxavir versus oseltamivir. When treatment was initiated 12-24 hours post symptom onset, the predicted transmission mitigation was 39.9-56.4% for baloxavir and 26.6-38.3% for oseltamivir depending on the infectiousness profile. When treatment was initiated 36-48 hours post symptom onset, the predicted transmission mitigation decreased to 0.8-28.3% for baloxavir and 0.8-19.9% for oseltamivir. Model estimates were compared with clinical data from the BLOCKSTONE post-exposure prophylaxis study, which indicated the log-scale model for infectiousness best fit the observed data and that baloxavir affords greater reductions in secondary case rates compared with neuraminidase inhibitors. These findings suggest a role for baloxavir and oseltamivir in reducing influenza transmission when treatment is initiated within 48 hours of symptom onset in the index patient.


Subject(s)
Influenza, Human , Thiepins , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Thiepins/pharmacology , Thiepins/therapeutic use , Triazines/pharmacology
6.
Infection ; 52(1): 275-276, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38085491

ABSTRACT

In a 21-year-old female, AIDS following infection with HIV-2 was diagnosed alongside an HIV-associated high-grade B cell lymphoma. Treatment of HIV-2 with dolutegravir, emtricitabine, and tenofovir resulted in viral suppression and slow recovery of CD4 cell counts. Treatment of lymphoma caused significant adverse effects but led to complete remission. The patient denied sexual activity and intravenous drug abuse. The patient had been born to an HIV-2-positive mother but appropriate perinatal testing based on national guidelines had remained negative. This case recapitulates the natural course of HIV-2 infection.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , HIV-1 , Female , Humans , Young Adult , Adult , HIV-2 , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/drug therapy , Adenine , Treatment Outcome , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/diagnosis , Oxazines/therapeutic use , Oxazines/pharmacology , Anti-HIV Agents/adverse effects
7.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216710

ABSTRACT

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Subject(s)
Dibenzothiepins , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Morpholines , Orthomyxoviridae , Pyridones , Thiepins , Triazines , Animals , Dogs , Humans , Swine , Influenza A virus/genetics , Oxazines/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Influenza A Virus, H5N1 Subtype/genetics , Thiepins/pharmacology , Thiepins/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Orthomyxoviridae/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Amino Acid Substitution , Endonucleases/genetics , Drug Resistance, Viral/genetics
8.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396638

ABSTRACT

The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.


Subject(s)
Anxiety , Citalopram , Depression , Nitric Oxide , Oxazines , Animals , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Citalopram/pharmacology , Citalopram/therapeutic use , Depression/drug therapy , Intercellular Adhesion Molecule-1 , Oxazines/pharmacology , Oxazines/therapeutic use , Sirtuin 1 , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins , Drug Therapy, Combination
9.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731859

ABSTRACT

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Subject(s)
Folic Acid , Heterocyclic Compounds, 3-Ring , Oxazines , Piperazines , Pyridones , Zebrafish , Animals , Heterocyclic Compounds, 3-Ring/pharmacology , Folic Acid/metabolism , Oxazines/pharmacology , Pyridones/pharmacology , Piperazines/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Neural Tube Defects/chemically induced , Neurogenesis/drug effects , Female
10.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675599

ABSTRACT

We introduced a terminal alkyne into the core structure of dolutegravir, resulting in the synthesis of 34 novel dolutegravir-1,2,3-triazole compounds through click chemistry. These compounds exhibited remarkable inhibitory activities against two hepatocellular carcinoma cell lines, Huh7 and HepG2. Notably, compounds 5e and 5p demonstrated exceptional efficacy, particularly against Huh7 cells, with IC50 values of 2.64 and 5.42 µM. Additionally, both compounds induced apoptosis in Huh7 cells, suppressed tumor cell clone formation, and elevated reactive oxygen species (ROS) levels, further promoting tumor cell apoptosis. Furthermore, compounds 5e and 5p activated the LC3 signaling pathway, inducing autophagy, and triggered the γ-H2AX signaling pathway, resulting in DNA damage in tumor cells. Compound 5e exhibited low toxicity, highlighting its potential as a promising anti-tumor drug.


Subject(s)
Antineoplastic Agents , Apoptosis , Autophagy , DNA Damage , Heterocyclic Compounds, 3-Ring , Liver Neoplasms , Oxazines , Piperazines , Pyridones , Reactive Oxygen Species , Humans , Pyridones/pharmacology , Pyridones/chemistry , Autophagy/drug effects , DNA Damage/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Piperazines/pharmacology , Piperazines/chemistry , Oxazines/pharmacology , Oxazines/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Drug Discovery
11.
Nat Prod Rep ; 40(12): 1874-1900, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37642299

ABSTRACT

Covering: up to the end of July, 20231,2-Oxazine is a heterocyclic scaffold rarely found in natural products and is characterized by a directly connected N-O bond in a six-membered ring. Since the discovery of geneserine, the first 1,2-oxazine-containing natural product (1,2-oxazine NP) being isolated from Calabar bean (Physostigma venenosum) in 1925, a total of 76 naturally occurring 1,2-oxazine NPs have been isolated and identified from various sources, which have attracted the attention of researchers in the field of natural product chemistry, organic synthesis, biosynthesis, and pharmacology. This review summarizes the chemical family of 1,2-oxazine NPs, focusing on their source organisms, structural diversities, chemical synthesis, and biosynthesis.


Subject(s)
Biological Products , Biological Products/pharmacology , Biological Products/chemistry , Oxazines/pharmacology , Oxazines/chemistry
12.
Br J Haematol ; 200(6): 802-811, 2023 03.
Article in English | MEDLINE | ID: mdl-36470677

ABSTRACT

Fostamatinib, a spleen tyrosine kinase inhibitor, has been approved for the treatment of chronic primary immune thrombocytopenia (ITP) in the United States, Canada and some European countries. We conducted a phase 3, placebo-controlled, double-blind, parallel-group study to evaluate the efficacy and safety of fostamatinib in Japanese patients with primary ITP. Thirty-four patients were randomised to fostamatinib (n = 22) or placebo (n = 12) at 100-150 mg twice a day for 24 weeks. Stable responses (platelet ≥50 000/µl at ≥4 of the 6 visits from weeks 14 to 24) were observed in eight (36%) patients on fostamatinib and in none of the patients on placebo (p = 0.030). Overall responses (platelet ≥50 000/µl at ≥1 of the 6 visits from weeks 2 to 12) were seen in 10 (45%) patients on fostamatinib and in none of the patients on placebo (p = 0.006). Patients on fostamatinib required rescue medication less often and experienced fewer bleeding symptoms than patients on placebo. Adverse events observed were mild or moderate and were manageable. No new safety signals were identified in Japanese patients with ITP.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Humans , Purpura, Thrombocytopenic, Idiopathic/drug therapy , East Asian People , Treatment Outcome , Oxazines/pharmacology , Pyridines , Double-Blind Method
13.
J Pharmacol Exp Ther ; 387(1): 111-120, 2023 10.
Article in English | MEDLINE | ID: mdl-37562971

ABSTRACT

We have previously shown that a bona fide aryl hydrocarbon receptor (AhR) agonist, cinnabarinic acid (CA), protects against alcohol-induced hepatocyte apoptosis via activation of a novel AhR target gene, stanniocalcin 2 (Stc2). Stc2 translates to a secreted disulfide-linked hormone, STC2, known to function in cell development, calcium and phosphate regulation, angiogenesis, and antiapoptosis-albeit the comprehensive mechanism by which the CA-AhR-STC2 axis confers antiapoptosis is yet to be characterized. In this study, using RNA interference library screening, downstream antiapoptotic molecular signaling components involved in CA-induced STC2-mediated protection against ethanol-induced apoptosis were investigated. RNA interference library screening of kinases and phosphatases in Hepa1 cells and subsequent pathway analysis identified mitogen-activated protein kinase (MAPK) signaling as a critical molecular pathway involved in CA-mediated protection. Specifically, phosphorylation of ERK1/2 was induced in response to CA treatment without alterations in p38 and JNK signaling pathways. Silencing Stc2 in Hepa1 cells and in vivo experiments performed in Stc2-/- (Stc2 knockout) mice, which failed to confer CA-mediated protection against ethanol-induced apoptosis, showed abrogation of ERK1/2 activation, underlining the significance of ERK1/2 signaling in CA-STC2-mediated protection. In conclusion, activation of ERK1/2 signaling in CA-driven AhR-dependent Stc2-mediated protection represents a novel mechanism of protection against acute alcohol-induced apoptosis. SIGNIFICANCE STATEMENT: Previous studies have shown the role of stanniocalcin 2 (Stc2) in cinnabarinic acid (CA)-mediated protection against alcohol-induced apoptosis. Here, using RNA interference library screening and subsequent in vivo studies, the functional significance of ERK1/2 activation in CA-induced Stc2-mediated protection against acute ethanol-induced apoptosis was identified. This study is thus significant as it illustrates a comprehensive downstream mechanism by which CA-induced Stc2 protects against alcoholic liver disease.


Subject(s)
Ethanol , Hepatocytes , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Oxazines , Animals , Mice , Apoptosis/drug effects , Apoptosis/physiology , Ethanol/toxicity , Intercellular Signaling Peptides and Proteins , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Liver/drug effects , Liver/physiopathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Oxazines/pharmacology , Oxazines/therapeutic use , Receptors, Aryl Hydrocarbon/agonists
14.
J Antimicrob Chemother ; 78(9): 2315-2322, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37534393

ABSTRACT

BACKGROUND: Blood telomere length (BTL) is a validated biomarker of aging. ART reduces immunosenescence and has benefits in terms of BTL in people living with HIV (PLWH). However, it has also been observed that ART containing NRTIs, such as tenofovir or abacavir, which are potent inhibitors of human telomerase activity in vitro, might negatively affect BTL. Here we investigated the effects on BTL 1 year after switching to a dual therapy (DT) with dolutegravir + lamivudine versus maintaining a standard triple therapy (TT) with a two-NRTI backbone and an anchor drug. METHODS: This was a longitudinal, prospective, matched, controlled study that included virologically suppressed adults on stable three-drug ART who either switched at baseline (BL) to DT or maintained TT. The DT and TT groups were 1:1 matched for age, sex, years since HIV diagnosis, years on ART and anchor drug. BTL was assessed by a monochrome multiplex qPCR at BL and after 48 weeks (W48). RESULTS: We enrolled 120 PLWH, i.e. 60 participants in each group. At BL, the BTL means were comparable between the two groups (P = 0.973). At W48, viro-immunological status was stable and an overall increase in the mean BTL was observed, i.e., +0.161 (95%CI, 0.054-0.268) (P = 0.004). However, the within-group analysis showed a significant mean BTL gain in the DT group (P = 0.003) but not in the TT group (P = 0.656). CONCLUSIONS: In this setting of virologically suppressed PLWH, simplifying to dolutegravir + lamivudine was associated with a higher gain in BTL than maintaining triple therapy after the 1 year follow-up. These findings suggest that as a simplification strategy dolutegravir + lamivudine might have a positive effect on BTL.


Subject(s)
Anti-HIV Agents , HIV Infections , Adult , Humans , Lamivudine/therapeutic use , Lamivudine/pharmacology , HIV Infections/drug therapy , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Prospective Studies , Oxazines/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 3-Ring/pharmacology , Pyridones/pharmacology , Telomere , Viral Load
15.
Biometals ; 36(6): 1241-1256, 2023 12.
Article in English | MEDLINE | ID: mdl-37378710

ABSTRACT

Three Ag(I) bis(phenanthroline-oxazine) complexes with varying lipophilicity were synthesised and characterised. The solution stoichiometry of 1:2 Ag(I):ligand was determined for each complex by the continuous variation Job's plot method using NMR spectroscopy. NMR studies were also carried out to investigate the fluxional behaviour of the Ag(I) complexes in solution. The biological activity of the silver(I) complexes and the corresponding ligands towards a clinical strain of Candida albicans MEN was studied using broth microdilution assays. Testing showed the choice of media and the duration of incubation were key determinants of the inhibitory behaviour towards Candida albicans, however, the difference between freshly prepared and pre-prepared solutions was insignificant in minimal media. The activity of the metal-free ligands correlated with the length of the alkyl chain. In minimal media, the methyl ester phenanthroline-oxazine ligand was effective only at 60 µM, limiting growth to 67% of the control, while a 60 µM dose of the propyl ester analogue limited fungal growth at < 20% of the control. MIC50 and MIC80 values for the propyl and hexyl ester analogues were calculated to be 45 and 59 µM (propyl), and 18 and 45 µM (hexyl). Moreover, in a study of activity as a function of time it was observed that the hexyl ester ligand maintained its activity for longer than the methyl and propyl analogues; after 48 h a 60 µM dose held fungal growth at 24% of that of the control. Complexation to Ag(I) was much more effective in enhancing biological activity of the ligands than was increasing the ester chain length. Significantly no difference in activity between the three silver(I) complexes was observed under the experimental conditions. All three complexes were substantially more active than their parent ligands against Candida albicans and AgClO4 and the three silver(I) bis(phen-oxazine) complexes have MIC80 values of < 15 µM. The ability of the silver(I) complexes to hold fungal growth at about 20% of the control even after 48 h incubation at low dosages (15 µM) showcases their superiority over the simple silver(I) perchlorate salt, which ceased to be effective at dosages below 60 µM at the extended time point.


Subject(s)
Candida albicans , Phenanthrolines , Humans , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Silver/pharmacology , Silver/chemistry , Ligands , Oxazines/pharmacology , Esters/pharmacology
16.
Platelets ; 34(1): 2131751, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36331249

ABSTRACT

Spleen tyrosine kinase (SYK) is an important regulatory molecule of signal transduction pathways involved in the pathogenesis of autoimmune diseases such as immune thrombocytopenia (ITP), and the SYK-signaling pathway has emerged as a potential target for the treatment of numerous diseases. The aim of this narrative review is to summarize the biological properties of SYK and its involvement in disease pathways, provide an update on SYK inhibitors in the treatment of ITP, and consider other potential applications. Fostamatinib, the only licensed SYK inhibitor to date, produces clinical response in ITP patients, including those who are refractory to other treatments. It appears to reduce the risk of thrombotic events and may therefore be a drug to consider for patients with an increased thrombotic risk. Encouraging results have also been obtained in the treatment of warm autoimmune hemolytic anemia. Several other SYK inhibitors have entered clinical trials for a range of indications, reflecting the ability of these drugs to affect multiple signaling pathways. SYK inhibitors have the potential to target several aspects of COVID-19 pathogenesis including thrombosis, without affecting normal hemostasis, and data from the first study of fostamatinib in COVID-19 are encouraging. It is hoped that ongoing trials in autoimmune indications other than ITP, as well as in hematological malignancies and other disorders, confirm the promise of SYK inhibitors.


Immune thrombocytopenia (ITP) is an autoimmune disease that usually happens when your immune system mistakenly attacks and destroys platelets, which are cells that help blood to clot. Individuals with ITP can experience easy or excessive bruising and bleeding. Scientists have identified that an enzyme called spleen tyrosine kinase (SYK) is involved in numerous biological processes that are associated with the immune system response, inflammation, and some types of cancer in humans. Therefore, it has become a target for new drugs which inhibit the action of SYK. In this review article, the authors provide a summary of the biological properties and actions of SYK and its involvement in various diseases, discuss information about drugs that have been developed as SYK inhibitors for the treatment of ITP, and consider other potential uses for drugs that inhibit SYK. Although several drugs are being developed, the only SYK inhibitor that is currently available for the treatment of ITP is a drug called fostamatinib. In patients with ITP, including those who no longer respond to other treatments, fostamatinib has been shown to improve platelet counts and reduce bleeding events. Researchers are also currently investigating the use of drugs that inhibit SYK, including fostamatinib, for the potential treatment of other diseases associated with inflammation (e.g. rheumatoid arthritis, COVID-19), autoimmunity (e.g. warm autoimmune hemolytic anemia), and blood cancers (e.g. lymphoma, chronic lymphocytic leukemia, and acute myeloid leukemia).


Subject(s)
COVID-19 , Oxazines , Purpura, Thrombocytopenic, Idiopathic , Pyridines , Humans , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Oxazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Pyridines/pharmacology , Syk Kinase
17.
Proc Natl Acad Sci U S A ; 117(15): 8593-8601, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32217734

ABSTRACT

Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined. To determine the fitness impact of the I38T/F/M substitutions, we generated recombinant A/California/04/2009 (H1N1)pdm09, A/Texas/71/2017 (H3N2), and B/Brisbane/60/2008 viruses with I38T/F/M and examined drug susceptibility in vitro, enzymatic properties, replication efficiency, and transmissibility in ferrets. Influenza viruses with I38T/F/M substitutions exhibited reduced baloxavir susceptibility, with 38T causing the greatest reduction. The I38T/F/M substitutions impaired PA endonuclease activity as compared to that of wild-type (I38-WT) PA. However, only 38T/F A(H3N2) substitutions had a negative effect on polymerase complex activity. The 38T/F substitutions decreased replication in cells among all viruses, whereas 38M had minimal impact. Despite variable fitness consequences in vitro, all 38T/M viruses disseminated to naive ferrets by contact and airborne transmission, while 38F-containing A(H3N2) and B viruses failed to transmit via the airborne route. Reversion of 38T/F/M to I38-WT was rare among influenza A viruses in this study, suggesting stable retention of 38T/F/M genotypes during these transmission events. BXM reduced susceptibility-associated mutations had variable effects on in vitro fitness of influenza A and B viruses, but the ability of these viruses to transmit in vivo indicates a risk of their spreading from BXM-treated individuals.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza B virus/drug effects , Orthomyxoviridae Infections/transmission , Oxazines/pharmacology , Pyridines/pharmacology , Thiepins/pharmacology , Triazines/pharmacology , Virus Replication , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins , Ferrets , Male , Microbial Sensitivity Tests , Morpholines , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Pyridones , Viral Proteins/genetics , Viral Proteins/metabolism
18.
Zygote ; 31(5): 483-490, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37449710

ABSTRACT

The influence of the method of evaluating developmentally competent oocytes on their viability after cryopreservation still needs to be better understood. The objective of this study was to determine the cleavage and embryo developmental rates after parthenogenetic activation of cumulus-oocyte complexes (COCs) selected by different concentrations of brilliant cresyl blue (BCB) and cryopreservation. In the first experiment, COCs were separated into groups and incubated for 1 h in medium containing BCB (13 µM, 16 µM, or 20 µM). The control group was not exposed to BCB staining. In the second experiment, COCs were divided into four groups: 13 µM BCB(+), 13 µM BCB(-), fresh control (selected by morphologic observation and immediately in vitro matured) and vitrified control (selected by morphologic evaluation, vitrified, and in vitro matured). In the first experiment, the 13 µM BCB group displayed greater development rates at the morula stage (65.45%, 36/55) when compared with the other groups. In the second experiment, cleavage (47.05%, 72/153) and morula development (33.55%, 51/153) of the control group of fresh COCs were increased compared with the other groups. However, when comparing morula rates between vitrified COC control and BCB(+) groups, the BCB(+) group had better results (19.23%, 5/26 and 64.7%, 11/17, respectively). Our best result in rat COC selection by BCB staining was obtained using a concentration of 13 µM. This selection could be a valuable tool to improve vitrification outcomes, as observed by the BCB(+) group that demonstrated better results compared with the vitrified COC control.


Subject(s)
In Vitro Oocyte Maturation Techniques , Vitrification , Rats , Animals , In Vitro Oocyte Maturation Techniques/methods , Oocytes/physiology , Oxazines/pharmacology
19.
Euro Surveill ; 28(39)2023 09.
Article in English | MEDLINE | ID: mdl-37768560

ABSTRACT

A community cluster of influenza A(H3N2) caused by viruses with an E199G substitution in PA was detected in Nara, Japan, between February and March 2023. The three patients with these mutant viruses had not received antiviral treatment before specimen collection but patients in the same hospital had. The sequences of the mutant viruses were closely related, suggesting clonal spread in Nara. They showed reduced susceptibility to baloxavir in vitro; however, the clinical significance of the PA E199G substitution remains unclear.


Subject(s)
Influenza, Human , Thiepins , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Oxazines/pharmacology , Pyridines/pharmacology , Japan , Thiepins/pharmacology , Thiepins/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics
20.
Mol Pharmacol ; 101(1): 45-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34764210

ABSTRACT

Aryl hydrocarbon receptor (AhR) is a ligand-mediated transcription factor known for regulating response to xenobiotics, including prototypical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the activation of CYP1A1 expression. Upon ligand-binding, AhR translocates to the nucleus, interacts with the AhR nuclear translocator, and binds to xenobiotic response elements (XREs; GCGTG) present in the promoter region of AhR-regulated genes. Recently, we identified a novel tryptophan catabolite, cinnabarinic acid (CA), as an endogenous AhR agonist capable of activating expression of AhR target gene stanniocalcin 2 (stc2). The CA-driven stc2 induction bestowed cytoprotection against hepatotoxicity in an AhR-dependent manner. Interestingly, only CA but not TCDD was able to induce stc2 expression in liver, and CA was unable to upregulate the TCDD responsive cyp1a1 gene. In this report, we identified CA-specific histone H4 lysine 5 acetylation and H3 lysine 79 methylation at the AhR-bound stc2 promoter. Moreover, histone H4 lysine 5 acetylation writer, activating transcription factor 2 (Atf2), and H3 lysine 79 methylation writer, disruptor of telomeric silencing 1-like histone lysine methyltransferase (Dot1l), were interacting with the AhR complex at the stc2 promoter exclusively in response to CA treatment concurrent with the histone epigenetic marks. Suppressing Atf2 and Dot1l expression using RNA interference confirmed their role in stc2 expression. CRISPR/Cas9-assisted replacement of cyp1a1 promoter-encompassing XREs with stc2 promoter XREs resulted in CA-dependent induction of cyp1a1, underlining a fundamental role of quaternary structure of XRE sequence in agonist-specific gene regulation. In conclusion, CA-driven recruitment of specific chromatin regulators to the AhR complex and resulting histone epigenetic modifications may serve as a molecular basis for agonist-specific stc2 regulation by AhR. SIGNIFICANCE STATEMENT: Results reported here provide a mechanistic explanation for the agonist-specific differential gene regulation by identifying interaction of aryl hydrogen receptor with specific chromatin regulators concomitant with unique histone epigenetic marks. This study also demonstrated that the agonist-specific target-gene expression can be transferred with the gene-specific promoter xenobiotic response element-sequence in the context of chromatin architecture.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/metabolism , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Oxazines/metabolism , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cell Line , Female , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Oxazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL