ABSTRACT
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land â¼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Subject(s)
Disease Resistance , Plant Diseases , Plant Immunity , Plants , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plants/immunology , Plants/genetics , Disease Resistance/genetics , HumansABSTRACT
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Calcium , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Calcium/metabolism , Disease Resistance , Immunity, Innate , NLR Proteins/metabolism , Plant Immunity , Receptors, Immunologic/metabolismABSTRACT
Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Diacylglycerol Kinase , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Diacylglycerol Kinase/metabolism , NADPH Oxidases/metabolism , Phosphatidic Acids/metabolism , Phosphorylation , Plant Immunity , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/metabolismABSTRACT
Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.
Subject(s)
Arabidopsis , Plant Immunity , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Pattern Recognition , Signal TransductionABSTRACT
Plant immune receptors often contain TIR domains, which can oligomerize to form active enzyme complexes in response to pathogen infections. In this issue of Cell, Yu and colleagues discover that some plant TIR domains possess a novel 2',3'-cAMP/cGMP synthetase activity that cleaves double-stranded RNA/DNA, triggering cell death during plant immune responses.
Subject(s)
Plant Immunity , Receptors, Immunologic , Cell Death/genetics , Plant Immunity/genetics , Plants/metabolism , Receptors, Immunologic/metabolismABSTRACT
2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Ligases/metabolism , NAD+ Nucleosidase/metabolism , Plant Diseases , Plant Immunity/physiology , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/metabolism , Nicotiana/genetics , Nicotiana/metabolismABSTRACT
Plant intracellular NLR proteins detect pathogen effectors and then form multimeric protein complexes ("resistosomes") that activate immune responses and cell death through unknown mechanisms. In this issue of Cell, Bi et al. show that the ZAR1 resistosome exhibits cation channel activity, enabling calcium influx that activates defense mechanisms and culminates in cell death.
Subject(s)
NLR Proteins , Plant Immunity , Cell Death , Plants , Signal TransductionABSTRACT
Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.
Subject(s)
Calcium/metabolism , Free Radical Scavengers/metabolism , Fungal Proteins/metabolism , Oryza/immunology , Plant Immunity , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Disease Resistance/genetics , Models, Biological , Oryza/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Protein Binding , Protein Stability , Reproduction , Species Specificity , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zea mays/immunologyABSTRACT
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Disease Resistance/immunology , Plant Immunity , Signal Transduction , Animals , Cell Death , Cell Membrane/metabolism , Cell Membrane Permeability , Glutamic Acid/metabolism , Lipid Bilayers/metabolism , Oocytes/metabolism , Plant Cells/metabolism , Protein Multimerization , Protoplasts/metabolism , Reactive Oxygen Species/metabolism , Single Molecule Imaging , Vacuoles/metabolism , XenopusABSTRACT
Plants employ numerous cell-surface and intracellular immune receptors to perceive a variety of immunogenic signals associated with pathogen infection and subsequently activate defenses. Immune signaling is potentiated by the major defense hormone salicylic acid (SA), which reprograms the transcriptome for defense. Here we highlight recent advances in understanding the mechanisms underlying activation of the main classes of immune receptors, summarize the current understanding of their signaling mechanisms, and discuss an updated model for SA perception and signaling. In addition, we discuss how different receptors are organized into networks and the implications of such networks in the integration of complex danger signals for appropriate defense outputs.
Subject(s)
Plant Immunity/genetics , Plant Immunity/immunology , Plant Immunity/physiology , Gene Expression Regulation, Plant/genetics , Plant Diseases/immunology , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Signal Transduction/geneticsABSTRACT
The plant immune response regulator NPR1 resides in either the nucleus or in cytoplasmic puncta, depending on levels of the plant hormone salicylic acid. NPR1 nuclear roles include pathogenesis response (PR) gene regulation. In this issue of Cell, Zavaliev et al. determine that cytoplasmic NPR1-containing assemblies are consistent with multi-component protein condensates with roles to promote cell survival.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Survival , Gene Expression Regulation, Plant , Plant ImmunityABSTRACT
Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.
Subject(s)
Cell Membrane/immunology , Chloroplasts/immunology , Plant Diseases/immunology , Plant Immunity/immunology , Signal Transduction/immunology , Arabidopsis Proteins/immunology , Host-Pathogen Interactions/immunology , Salicylic Acid/immunology , Virulence/immunologyABSTRACT
In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.
Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Survival/immunology , Plant Immunity/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Ubiquitination/immunologyABSTRACT
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Subject(s)
MicroRNAs , RNA, Viral , Antiviral Agents , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Disease Resistance/genetics , MicroRNAs/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Immunity/genetics , Plants/genetics , RNA Interference , RNA, Plant , RNA, Small Interfering/metabolismABSTRACT
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , NLR Proteins/genetics , Alleles , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Genetic Variation , Genome, Plant , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Immunity , Species SpecificityABSTRACT
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Subject(s)
Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Mimicry/immunology , Plant Immunity/physiology , Adenosine Triphosphatases/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/microbiology , Bacterial Proteins/chemistry , HEK293 Cells , HSP90 Heat-Shock Proteins/chemistry , HeLa Cells , Host Microbial Interactions/immunology , Humans , Phosphorylation , Plasmids/genetics , Protein Binding , Protein Folding , Protein Kinases/metabolism , Pseudomonas syringae/metabolism , Saccharomyces cerevisiae/metabolismABSTRACT
Salicylic acid (SA) is a potent inducer of defense gene expression in plants, but how SA activates transcription has been controversial. In this issue of Cell, Ding et al. show that the SA-binding proteins NPR3 and NPR4 function as transcriptional co-repressors, with this activity being blocked by SA.
Subject(s)
Arabidopsis Proteins , Salicylic Acid , Arabidopsis , Plant Immunity , Signal TransductionABSTRACT
Salicylic acid (SA) is a plant defense hormone required for immunity. Arabidopsis NPR1 and NPR3/NPR4 were previously shown to bind SA and all three proteins were proposed as SA receptors. NPR1 functions as a transcriptional co-activator, whereas NPR3/NPR4 were suggested to function as E3 ligases that promote NPR1 degradation. Here we report that NPR3/NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote the expression of downstream immune regulators. npr4-4D, a gain-of-function npr4 allele that renders NPR4 unable to bind SA, constitutively represses SA-induced immune responses. In contrast, the equivalent mutation in NPR1 abolishes its ability to bind SA and promote SA-induced defense gene expression. Further analysis revealed that NPR3/NPR4 and NPR1 function independently to regulate SA-induced immune responses. Our study indicates that both NPR1 and NPR3/NPR4 are bona fide SA receptors, but play opposite roles in transcriptional regulation of SA-induced defense gene expression.
Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Plant Immunity , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Mutation , Plant Diseases , Plant Growth Regulators/physiology , Salicylic Acid , Seeds/physiology , Signal Transduction , Transcription Factors/physiology , Ubiquitin-Protein Ligases/physiologyABSTRACT
Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Oxygenases/metabolism , Pipecolic Acids/metabolism , Plant Immunity/drug effects , Arabidopsis/enzymology , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Gas Chromatography-Mass Spectrometry , Lysine/metabolism , Oomycetes/pathogenicity , Oxygenases/genetics , Pipecolic Acids/analysis , Pipecolic Acids/pharmacology , Plant Leaves/enzymology , Plant Leaves/immunology , Plant Leaves/metabolism , Pseudomonas syringae/pathogenicity , Transaminases/genetics , Transaminases/metabolismABSTRACT
The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for â¼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.