Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106.086
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4626-4639.e13, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34411517

ABSTRACT

Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.


Subject(s)
Auditory Cortex/physiology , Speech/physiology , Audiometry, Pure-Tone , Electrodes , Electronic Data Processing , Humans , Phonetics , Pitch Perception , Reaction Time/physiology , Temporal Lobe/physiology
2.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31955849

ABSTRACT

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Subject(s)
Cerebellum/physiology , Decision Making/physiology , Reaction Time/physiology , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Brain Mapping/methods , Cerebrum/physiology , Cognition/physiology , Conditioning, Operant/physiology , Goals , Habenula/physiology , Hot Temperature , Larva/physiology , Motor Activity/physiology , Movement , Neurons/physiology , Psychomotor Performance/physiology , Rhombencephalon/physiology
3.
Cell ; 179(5): 1015-1032, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730847

ABSTRACT

We describe single-neuron recordings in the human hippocampal formation, performed in epileptic patients for clinical reasons, and highlight their advantages, challenges, and limitations compared with non-invasive recordings in humans and invasive recordings in animals. We propose a unified framework to explain different findings-responses to novel stimuli, spatial locations, and specific concepts-linking the rodent and human literature regarding the function of the hippocampal formation. Moreover, we propose a model of how memories are encoded in this area, suggesting that the context-independent, invariant coding by concept cells may provide a uniquely human neural mechanism underlying memory representations.


Subject(s)
Memory/physiology , Neurons/physiology , Action Potentials/physiology , Humans , Memory Consolidation/physiology , Models, Neurological , Reaction Time/physiology
4.
Annu Rev Neurosci ; 45: 403-423, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803585

ABSTRACT

The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.


Subject(s)
Attention , Attention/physiology , Humans , Reaction Time/physiology
5.
Nature ; 618(7967): 1000-1005, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258667

ABSTRACT

A hallmark of human intelligence is the ability to plan multiple steps into the future1,2. Despite decades of research3-5, it is still debated whether skilled decision-makers plan more steps ahead than novices6-8. Traditionally, the study of expertise in planning has used board games such as chess, but the complexity of these games poses a barrier to quantitative estimates of planning depth. Conversely, common planning tasks in cognitive science often have a lower complexity9,10 and impose a ceiling for the depth to which any player can plan. Here we investigate expertise in a complex board game that offers ample opportunity for skilled players to plan deeply. We use model fitting methods to show that human behaviour can be captured using a computational cognitive model based on heuristic search. To validate this model, we predict human choices, response times and eye movements. We also perform a Turing test and a reconstruction experiment. Using the model, we find robust evidence for increased planning depth with expertise in both laboratory and large-scale mobile data. Experts memorize and reconstruct board features more accurately. Using complex tasks combined with precise behavioural modelling might expand our understanding of human planning and help to bridge the gap with progress in artificial intelligence.


Subject(s)
Choice Behavior , Game Theory , Games, Experimental , Intelligence , Models, Psychological , Humans , Artificial Intelligence , Cognition , Eye Movements , Heuristics , Memory , Reaction Time , Reproducibility of Results
6.
PLoS Biol ; 22(6): e3002686, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900903

ABSTRACT

Humans are known to be capable of inferring hidden preferences and beliefs of their conspecifics when observing their decisions. While observational learning based on choices has been explored extensively, the question of how response times (RT) impact our learning of others' social preferences has received little attention. Yet, while observing choices alone can inform us about the direction of preference, they reveal little about the strength of this preference. In contrast, RT provides a continuous measure of strength of preference with faster responses indicating stronger preferences and slower responses signaling hesitation or uncertainty. Here, we outline a preregistered orthogonal design to investigate the involvement of both choices and RT in learning and inferring other's social preferences. Participants observed other people's behavior in a social preferences task (Dictator Game), seeing either their choices, RT, both, or no information. By coupling behavioral analyses with computational modeling, we show that RT is predictive of social preferences and that observers were able to infer those preferences even when receiving only RT information. Based on these findings, we propose a novel observational reinforcement learning model that closely matches participants' inferences in all relevant conditions. In contrast to previous literature suggesting that, from a Bayesian perspective, people should be able to learn equally well from choices and RT, we show that observers' behavior substantially deviates from this prediction. Our study elucidates a hitherto unknown sophistication in human observational learning but also identifies important limitations to this ability.


Subject(s)
Choice Behavior , Decision Making , Reaction Time , Humans , Male , Female , Decision Making/physiology , Reaction Time/physiology , Adult , Young Adult , Bayes Theorem , Social Behavior , Learning
7.
PLoS Biol ; 22(6): e3002670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38917200

ABSTRACT

Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.


Subject(s)
Attention , Beta Rhythm , Macaca mulatta , Motor Cortex , Movement , Reaction Time , Animals , Motor Cortex/physiology , Attention/physiology , Beta Rhythm/physiology , Movement/physiology , Reaction Time/physiology , Macaca mulatta/physiology , Male , Cues , Psychomotor Performance/physiology
8.
Nature ; 594(7861): 82-87, 2021 06.
Article in English | MEDLINE | ID: mdl-34012117

ABSTRACT

Precise tongue control is necessary for drinking, eating and vocalizing1-3. However, because tongue movements are fast and difficult to resolve, neural control of lingual kinematics remains poorly understood. Here we combine kilohertz-frame-rate imaging and a deep-learning-based neural network to resolve 3D tongue kinematics in mice drinking from a water spout. Successful licks required corrective submovements that-similar to online corrections during primate reaches4-11-occurred after the tongue missed unseen, distant or displaced targets. Photoinhibition of anterolateral motor cortex impaired corrections, which resulted in hypometric licks that missed the spout. Neural activity in anterolateral motor cortex reflected upcoming, ongoing and past corrective submovements, as well as errors in predicted spout contact. Although less than a tenth of a second in duration, a single mouse lick exhibits the hallmarks of online motor control associated with a primate reach, including cortex-dependent corrections after misses.


Subject(s)
Adaptation, Physiological , Attention , Drinking , Motor Cortex/physiology , Psychomotor Performance/physiology , Tongue/physiology , Animals , Biomechanical Phenomena , Deep Learning , Male , Mice , Reaction Time , Water
9.
Annu Rev Physiol ; 85: 191-215, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36343603

ABSTRACT

Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.


Subject(s)
Brain Mapping , Decision Making , Humans , Reaction Time , Magnetic Resonance Imaging , Brain
10.
PLoS Biol ; 21(7): e3002200, 2023 07.
Article in English | MEDLINE | ID: mdl-37459392

ABSTRACT

Sensorimotor decision-making is believed to involve a process of accumulating sensory evidence over time. While current theories posit a single accumulation process prior to planning an overt motor response, here, we propose an active role of motor processes in decision formation via a secondary leaky motor accumulation stage. The motor leak adapts the "memory" with which this secondary accumulator reintegrates the primary accumulated sensory evidence, thus adjusting the temporal smoothing in the motor evidence and, correspondingly, the lag between the primary and motor accumulators. We compare this framework against different single accumulator variants using formal model comparison, fitting choice, and response times in a task where human observers made categorical decisions about a noisy sequence of images, under different speed-accuracy trade-off instructions. We show that, rather than boundary adjustments (controlling the amount of evidence accumulated for decision commitment), adjustment of the leak in the secondary motor accumulator provides the better description of behavior across conditions. Importantly, we derive neural correlates of these 2 integration processes from electroencephalography data recorded during the same task and show that these neural correlates adhere to the neural response profiles predicted by the model. This framework thus provides a neurobiologically plausible description of sensorimotor decision-making that captures emerging evidence of the active role of motor processes in choice behavior.


Subject(s)
Decision Making , Electroencephalography , Humans , Decision Making/physiology , Reaction Time/physiology
11.
PLoS Biol ; 21(3): e3002014, 2023 03.
Article in English | MEDLINE | ID: mdl-36888690

ABSTRACT

A growing body of research demonstrates that distracting inputs can be proactively suppressed via spatial cues, nonspatial cues, or experience, which are governed by more than one top-down mechanism of attention. However, how the neural mechanisms underlying spatial distractor cues guide proactive suppression of distracting inputs remains unresolved. Here, we recorded electroencephalography signals from 110 participants in 3 experiments to identify the role of alpha activity in proactive distractor suppression induced by spatial cues and its influence on subsequent distractor inhibition. Behaviorally, we found novel changes in the spatial proximity of the distractor: Cueing distractors far away from the target improves search performance for the target, while cueing distractors close to the target hampers performance. Crucially, we found dynamic characteristics of spatial representation for distractor suppression during anticipation. This result was further verified by alpha power increased relatively contralateral to the cued distractor. At both the between- and within-subjects levels, we found that these activities further predicted the decrement of the subsequent PD component, which was indicative of reduced distractor interference. Moreover, anticipatory alpha activity and its link with the subsequent PD component were specific to the high predictive validity of distractor cue. Together, our results reveal the underlying neural mechanisms by which cueing the spatial distractor may contribute to reduced distractor interference. These results also provide evidence supporting the role of alpha activity as gating by proactive suppression.


Subject(s)
Cues , Electroencephalography , Humans , Attention/physiology , Inhibition, Psychological , Reaction Time/physiology , Visual Perception/physiology
12.
PLoS Biol ; 21(6): e3002128, 2023 06.
Article in English | MEDLINE | ID: mdl-37279203

ABSTRACT

Humans can easily tune in to one talker in a multitalker environment while still picking up bits of background speech; however, it remains unclear how we perceive speech that is masked and to what degree non-target speech is processed. Some models suggest that perception can be achieved through glimpses, which are spectrotemporal regions where a talker has more energy than the background. Other models, however, require the recovery of the masked regions. To clarify this issue, we directly recorded from primary and non-primary auditory cortex (AC) in neurosurgical patients as they attended to one talker in multitalker speech and trained temporal response function models to predict high-gamma neural activity from glimpsed and masked stimulus features. We found that glimpsed speech is encoded at the level of phonetic features for target and non-target talkers, with enhanced encoding of target speech in non-primary AC. In contrast, encoding of masked phonetic features was found only for the target, with a greater response latency and distinct anatomical organization compared to glimpsed phonetic features. These findings suggest separate mechanisms for encoding glimpsed and masked speech and provide neural evidence for the glimpsing model of speech perception.


Subject(s)
Speech Perception , Speech , Humans , Speech/physiology , Acoustic Stimulation , Phonetics , Speech Perception/physiology , Reaction Time
13.
Proc Natl Acad Sci U S A ; 120(16): e2218042120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37040406

ABSTRACT

Learning advances through repetition. A classic paradigm for studying this process is the Hebb repetition effect: Immediate serial recall performance improves for lists presented repeatedly as compared to nonrepeated lists. Learning in the Hebb paradigm has been described as a slow but continuous accumulation of long-term memory traces over repetitions [e.g., Page & Norris, Phil. Trans. R. Soc. B 364, 3737-3753 (2009)]. Furthermore, it has been argued that Hebb repetition learning requires no awareness of the repetition, thereby being an instance of implicit learning [e.g., Guérard et al., Mem. Cogn. 39, 1012-1022 (2011); McKelvie,  J. Gen. Psychol. 114, 75-88 (1987)]. While these assumptions match the data from a group-level perspective, another picture emerges when analyzing data on the individual level. We used a Bayesian hierarchical mixture modeling approach to describe individual learning curves. In two preregistered experiments, using a visual and a verbal Hebb repetition task, we demonstrate that 1) individual learning curves show an abrupt onset followed by rapid growth, with a variable time for the onset of learning across individuals, and that 2) learning onset was preceded by, or coincided with, participants becoming aware of the repetition. These results imply that repetition learning is not implicit and that the appearance of a slow and gradual accumulation of knowledge is an artifact of averaging over individual learning curves.


Subject(s)
Memory, Short-Term , Serial Learning , Humans , Bayes Theorem , Reaction Time , Learning Curve
14.
Proc Natl Acad Sci U S A ; 120(9): e2210839120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36812207

ABSTRACT

During visual search, it is important to reduce the interference of distracting objects in the scene. The neuronal responses elicited by the search target stimulus are typically enhanced. However, it is equally important to suppress the representations of distracting stimuli, especially if they are salient and capture attention. We trained monkeys to make an eye movement to a unique "pop-out" shape stimulus among an array of distracting stimuli. One of these distractors had a salient color that varied across trials and differed from the color of the other stimuli, causing it to also pop-out. The monkeys were able to select the pop-out shape target with high accuracy and actively avoided the pop-out color distractor. This behavioral pattern was reflected in the activity of neurons in area V4. Responses to the shape targets were enhanced, while the activity evoked by the pop-out color distractor was only briefly enhanced, directly followed by a sustained period of pronounced suppression. These behavioral and neuronal results demonstrate a cortical selection mechanism that rapidly inverts a pop-out signal to "pop-in" for an entire feature dimension thereby facilitating goal-directed visual search in the presence of salient distractors.


Subject(s)
Color Perception , Visual Cortex , Animals , Color Perception/physiology , Haplorhini , Attention/physiology , Eye Movements , Visual Cortex/physiology , Reaction Time/physiology , Visual Perception/physiology
15.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38134196

ABSTRACT

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Virus Shedding , Antibody Formation , Reaction Time , Antibodies, Viral , RNA, Viral , Immunoglobulin G , Immunoglobulin A , Immunoglobulin A, Secretory
16.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38729760

ABSTRACT

Essential tremor (ET), a movement disorder characterized by involuntary oscillations of the limbs during movement, remains to date not well understood. It has been recently suggested that the tremor originates from impaired delay compensation, affecting movement representation and online control. Here we tested this hypothesis directly with 24 ET patients (14 female; 10 male) and 28 neurologically intact (NI) human volunteers (17 female; 11 male) in an upper limb postural perturbation task. After maintaining their hand in a visual target, participants experienced perturbations of unpredictable direction and magnitude and were instructed to counter the perturbation and steer their hand back to the starting position. In comparison with NI volunteers, ET patients' early muscular responses (short and long-latency responses, 20-50 and 50-100 ms, respectively) were preserved or even slightly increased. However, they exhibited perturbation-dependent deficits when stopping and stabilizing their hand in the final target supporting the hypothesis that the tremor was generated by the feedback controller. We show in a computational model that errors in delay compensation accumulating over time produced the same small increase in initial feedback response followed by oscillations that scaled with the perturbation magnitude as observed in ET population. Our experimental results therefore validate the computational hypothesis that inaccurate delay compensation in long-latency pathways could be the origin of the tremor.


Subject(s)
Essential Tremor , Reaction Time , Humans , Essential Tremor/physiopathology , Male , Female , Middle Aged , Aged , Reaction Time/physiology , Adult , Psychomotor Performance/physiology , Electromyography , Movement/physiology
17.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38360748

ABSTRACT

A prominent account of decision-making assumes that information is accumulated until a fixed response threshold is crossed. However, many decisions require weighting of information appropriately against time. Collapsing response thresholds are a mathematically optimal solution to this decision problem. However, our understanding of the neurocomputational mechanisms underlying dynamic response thresholds remains significantly incomplete. To investigate this issue, we used a multistage drift-diffusion model (DDM) and also analyzed EEG ß power lateralization (BPL). The latter served as a neural proxy for decision signals. We analyzed a large dataset (n = 863; 434 females and 429 males) from a speeded flanker task and data from an independent confirmation sample (n = 119; 70 females and 49 males). We showed that a DDM with collapsing decision thresholds, a process wherein the decision boundary reduces over time, captured participants' time-dependent decision policy more accurately than a model with fixed thresholds. Previous research suggests that BPL over motor cortices reflects features of a decision signal and that its peak, coinciding with the motor response, may serve as a neural proxy for the decision threshold. We show that BPL around the response decreased with increasing RTs. Together, our findings offer compelling evidence for the existence of collapsing decision thresholds in decision-making processes.


Subject(s)
Decision Making , Male , Female , Humans , Decision Making/physiology , Reaction Time/physiology
18.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38871463

ABSTRACT

Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent hidden Markov model-generalized linear models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a win-stay, lose-shift strategy with interspecies similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.


Subject(s)
Macaca mulatta , Animals , Female , Male , Humans , Adult , Learning/physiology , Young Adult , Species Specificity , Choice Behavior/physiology , Reaction Time/physiology
19.
J Neurosci ; 44(3)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38050156

ABSTRACT

Reading acquisition involves the integration of auditory and visual stimuli. Thus, low-level audiovisual multisensory integration might contribute to disrupted reading in developmental dyslexia. Although dyslexia is more frequently diagnosed in males and emerging evidence indicates that the neural basis of dyslexia might differ between sexes, previous studies examining multisensory integration did not evaluate potential sex differences nor tested its neural correlates. In the current study on 88 adolescents and young adults, we found that only males with dyslexia showed a deficit in multisensory integration of simple nonlinguistic stimuli. At the neural level, both females and males with dyslexia presented smaller differences in response to multisensory compared to those in response to unisensory conditions in the N1 and N2 components (early components of event-related potentials associated with sensory processing) than the control group. Additionally, in a subsample of 80 participants matched for nonverbal IQ, only males with dyslexia exhibited smaller differences in the left hemisphere in response to multisensory compared to those in response to unisensory conditions in the N1 component. Our study indicates that deficits of multisensory integration seem to be more severe in males than females with dyslexia. This provides important insights into sex-modulated cognitive processes that might confer vulnerability to reading difficulties.


Subject(s)
Auditory Perception , Dyslexia , Adolescent , Young Adult , Humans , Male , Female , Auditory Perception/physiology , Reaction Time/physiology , Visual Perception/physiology , Sex Characteristics , Acoustic Stimulation
20.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38670805

ABSTRACT

Reinforcement learning is a theoretical framework that describes how agents learn to select options that maximize rewards and minimize punishments over time. We often make choices, however, to obtain symbolic reinforcers (e.g., money, points) that are later exchanged for primary reinforcers (e.g., food, drink). Although symbolic reinforcers are ubiquitous in our daily lives, widely used in laboratory tasks because they can be motivating, mechanisms by which they become motivating are less understood. In the present study, we examined how monkeys learn to make choices that maximize fluid rewards through reinforcement with tokens. The question addressed here is how the value of a state, which is a function of multiple task features (e.g., the current number of accumulated tokens, choice options, task epoch, trials since the last delivery of primary reinforcer, etc.), drives value and affects motivation. We constructed a Markov decision process model that computes the value of task states given task features to then correlate with the motivational state of the animal. Fixation times, choice reaction times, and abort frequency were all significantly related to values of task states during the tokens task (n = 5 monkeys, three males and two females). Furthermore, the model makes predictions for how neural responses could change on a moment-by-moment basis relative to changes in the state value. Together, this task and model allow us to capture learning and behavior related to symbolic reinforcement.


Subject(s)
Choice Behavior , Macaca mulatta , Motivation , Reinforcement, Psychology , Reward , Animals , Motivation/physiology , Male , Choice Behavior/physiology , Reaction Time/physiology , Markov Chains , Female
SELECTION OF CITATIONS
SEARCH DETAIL