Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 508
Filter
Add more filters

Publication year range
1.
Genes Cells ; 28(1): 29-41, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401755

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic remains worldwide. The usefulness of the intranasal vaccine and boost immunization against severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has recently received much attention. We developed an intranasal SARS-CoV-2 vaccine by loading the receptor binding domain of the S protein (S-RBD) of SARS-CoV-2 as an antigen into an F-deficient Sendai virus vector. After the S-RBD-Fd antigen with trimer formation ability was intranasally administered to mice, S-RBD-specific IgM, IgG, IgA, and neutralizing antibody titers were increased in serum or bronchoalveolar lavage fluid for 12 weeks. Furthermore, in mice that received a booster dose at week 8, a marked increase in neutralizing antibodies in the serum and bronchoalveolar lavage fluid was observed at the final evaluation at week 12, which neutralized the pseudotyped lentivirus expressing the SARS-CoV-2 spike protein, indicating the usefulness of the Sendai virus-based SARS-CoV-2 intranasal vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , Disease Models, Animal , SARS-CoV-2 , Sendai virus/genetics , Mice
2.
J Virol ; 95(19): e0081521, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287046

ABSTRACT

Sendai virus (SeV), belonging to the Respirovirus genus of the family Paramyxoviridae, harbors an accessory protein, named C protein, which facilitates viral pathogenicity in mice. In addition, the C protein is known to stimulate the budding of virus-like particles by binding to the host ALG-2 interacting protein X (Alix), a component of the endosomal sorting complexes required for transport (ESCRT) machinery. However, small interfering RNA (siRNA)-mediated gene knockdown studies suggested that neither Alix nor C protein is related to SeV budding. In the present study, we determined the crystal structure of a complex comprising the C-terminal half of the C protein (Y3) and the Bro1 domain of Alix at a resolution of 2.2 Å to investigate the role of the complex in SeV budding. The structure revealed that a novel consensus sequence, LXXW, which is conserved among Respirovirus C proteins, is important for Alix binding. SeV possessing a mutated C protein with reduced Alix-binding affinity showed impaired virus production, which correlated with the binding affinity. Infectivity analysis showed a 160-fold reduction at 12 h postinfection compared with nonmutated virus, while C protein competes with CHMP4, one subunit of the ESCRT-III complex, for binding to Alix. All together, these results highlight the critical role of C protein in SeV budding. IMPORTANCE Human parainfluenza virus type I (hPIV1) is a respiratory pathogen affecting young children, immunocompromised patients, and the elderly, with no available vaccines or antiviral drugs. Sendai virus (SeV), a murine counterpart of hPIV1, has been studied extensively to determine the molecular and biological properties of hPIV1. These viruses possess a multifunctional accessory protein, C protein, which is essential for stimulating viral reproduction, but its role in budding remains controversial. In the present study, the crystal structure of the C-terminal half of the SeV C protein associated with the Bro1 domain of Alix, a component of cell membrane modulating machinery ESCRT, was elucidated. Based on the structure, we designed mutant C proteins with different binding affinities to Alix and showed that the interaction between C and Alix is vital for viral budding. These findings provide new insights into the development of new antiviral drugs against hPIV1.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Sendai virus/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Release , Amino Acid Sequence , Animals , Binding, Competitive , Cell Line , Crystallography, X-Ray , Humans , Interferon-alpha/genetics , Interferon-alpha/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Sendai virus/chemistry , Sendai virus/genetics , Sendai virus/metabolism , Signal Transduction , Virion/physiology
3.
PLoS Comput Biol ; 17(8): e1009299, 2021 08.
Article in English | MEDLINE | ID: mdl-34383757

ABSTRACT

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection hospitalization in children, yet little is known about how dose, strain, tissue tropism, and individual heterogeneity affects the processes driving growth and clearance kinetics. Longitudinal measurements are possible by using reporter Sendai viruses, the murine counterpart of HPIV 1, that express luciferase, where the insertion location yields a wild-type (rSeV-luc(M-F*)) or attenuated (rSeV-luc(P-M)) phenotype. Bioluminescence from individual animals suggests that there is a rapid increase in expression followed by a peak, biphasic clearance, and resolution. However, these kinetics vary between individuals and with dose, strain, and whether the infection was initiated in the upper and/or lower respiratory tract. To quantify the differences, we translated the bioluminescence measurements from the nasopharynx, trachea, and lung into viral loads and used a mathematical model together a nonlinear mixed effects approach to define the mechanisms distinguishing each scenario. The results confirmed a higher rate of virus production with the rSeV-luc(M-F*) virus compared to its attenuated counterpart, and suggested that low doses result in disproportionately fewer infected cells. The analyses indicated faster infectivity and infected cell clearance rates in the lung and that higher viral doses, and concomitantly higher infected cell numbers, resulted in more rapid clearance. This parameter was also highly variable amongst individuals, which was particularly evident during infection in the lung. These critical differences provide important insight into distinct HPIV dynamics, and show how bioluminescence data can be combined with quantitative analyses to dissect host-, virus-, and dose-dependent effects.


Subject(s)
Lung/virology , Paramyxoviridae Infections/physiopathology , Respiratory Tract Infections/virology , Animals , Host-Pathogen Interactions , Humans , Luciferases/genetics , Luminescence , Mice , Respiratory Tract Infections/physiopathology , Sendai virus/genetics
4.
J Immunol ; 205(1): 168-180, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32393512

ABSTRACT

The RNA helicase DDX39A plays an important role in the RNA splicing/export process. In our study, human DDX39A facilitated RNA virus escape from innate immunity to promote virus proliferation by trapping TRAF3, TRAF6, and MAVS mRNAs in the HEK293T cell nucleus. DDX39A was a target for SUMOylation. SUMO1, 2, and 3 modifications were found on immunoprecipitated DDX39A. However, only the SUMO1 modification decreased in vesicular stomatitis virus-infected HEK293T cells. Further studies have found that viral infection reduced SUMO1 modification of DDX39A and enhanced its ability to bind innate immunity-associated mRNAs by regulating the abundance of RanBP2 with SUMO1 E3 ligase activity. RanBP2 acted as an E3 SUMO ligase of DDX39A, which enhanced SUMO1 modification of DDX39A and attenuated its ability to bind RNA. This work described that specific mRNAs encoding antiviral signaling components were bound and sequestered in the nucleus by DDX39A to limit their expression, which proposed a new protein SUMOylation model to regulate innate immunity in viral infection.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , RNA Virus Infections/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Nucleus/metabolism , Chlorocebus aethiops , DEAD-box RNA Helicases/genetics , Down-Regulation , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/immunology , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/genetics , RNA Virus Infections/virology , RNA, Messenger/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , SUMO-1 Protein/metabolism , Sendai virus/genetics , Sendai virus/immunology , Sumoylation/immunology , TNF Receptor-Associated Factor 3/genetics , Transcription, Genetic/immunology , Vero Cells , Vesiculovirus/genetics , Vesiculovirus/immunology , Virus Replication/immunology
5.
J Cell Mol Med ; 25(20): 9586-9596, 2021 10.
Article in English | MEDLINE | ID: mdl-34510713

ABSTRACT

Human pluripotent stem cells have the potential to differentiate into various cell types including skeletal muscles (SkM), and they are applied to regenerative medicine or in vitro modelling for intractable diseases. A simple differentiation method is required for SkM cells to accelerate neuromuscular disease studies. Here, we established a simple method to convert human pluripotent stem cells into SkM cells by using temperature-sensitive Sendai virus (SeV) vector encoding myoblast determination protein 1 (SeV-Myod1), a myogenic master transcription factor. SeV-Myod1 treatment converted human embryonic stem cells (ESCs) into SkM cells, which expressed SkM markers including myosin heavy chain (MHC). We then removed the SeV vector by temporal treatment at a high temperature of 38℃, which also accelerated mesodermal differentiation, and found that SkM cells exhibited fibre-like morphology. Finally, after removal of the residual human ESCs by pluripotent stem cell-targeting delivery of cytotoxic compound, we generated SkM cells with 80% MHC positivity and responsiveness to electrical stimulation. This simple method for myogenic differentiation was applicable to human-induced pluripotent stem cells and will be beneficial for investigations of disease mechanisms and drug discovery in the future.


Subject(s)
Cell Differentiation , Genetic Vectors , Muscle Development , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Sendai virus , Calcium/metabolism , Calcium Signaling , Cell Differentiation/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fluorescent Antibody Technique , Gene Expression , Genetic Vectors/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Muscle Development/genetics , Sendai virus/genetics , Temperature , Transgenes
6.
J Biol Chem ; 295(14): 4438-4450, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32102850

ABSTRACT

Animal cells use pattern-recognition receptors (PRRs) to detect specific pathogens. Pathogen detection mounts an appropriate immune response, including interferon and cytokine induction. The intracellular PRR-signaling pathways that detect DNA viruses have been characterized, particularly in myeloid cells. In these pathways, cGMP-AMP synthase (cGAS) and the pyrin and HIN domain family member (PYHIN) protein interferon-γ-inducible protein 16 (IFI16) detect DNA and signal via stimulator of interferon genes protein (STING). However, although airway epithelial cells are frontline sentinels in detecting pathogens, information on how they respond to DNA viruses is limited, and the roles of PYHIN proteins in these cells are unknown. Here, we examined expression and activities of cGAS, STING, and PYHINs in human lung epithelial cells. A549 epithelial cells, commonly used for RNA-sensing studies, failed to respond to DNA because they lacked STING expression, and ectopic STING expression restored a cGAS-dependent DNA response in these cells. In contrast, NuLi-1 immortalized human bronchial epithelial cells did express STING, which was activated after DNA stimulation and mediated DNA-dependent gene induction. PYHIN1, which like IFI16 has been proposed to be a viral DNA sensor, was the only PYHIN protein expressed in both airway epithelial cell types. However, rather than having a role in DNA sensing, PYHIN1 induced proinflammatory cytokines in response to interleukin-1 (IL-1) or tumor necrosis factor α (TNFα) stimulation. Of note, PYHIN1, via its HIN domain, directly induced IL-6 and TNFα transcription, revealing that PYHIN proteins play a role in proinflammatory gene induction in airway epithelial cells.


Subject(s)
Cytokines/metabolism , DNA, Viral/metabolism , Immunity, Innate , Nuclear Proteins/metabolism , Cell Line , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Humans , Interleukin-1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Phosphoproteins/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Sendai virus/genetics , Sendai virus/physiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Biochem Biophys Res Commun ; 560: 87-92, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33984769

ABSTRACT

Adult hearts have limited regenerative capacity. Hence, after acute myocardial infarction (MI), dead myocardial tissues are digested by immune cells and replaced by fibrosis, leading to ventricular remodeling and heart failure at the chronic stage. Direct reprogramming of the cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs) with cardiac transcription factors, including Gata4, Mef2c, and Tbx5 (GMT), may have significant potential for cardiac repair. Sendai virus (SeV) vectors expressing GMT have been reported to reprogram the mouse cardiac fibroblasts into iCMs without any risk of insertional mutagenesis. In vivo reprogramming improved the cardiac function after acute MI in immunodeficient mice. However, it is unknown whether the newly generated iCMs could exist in infarct hearts for a prolonged period and SeV-GMT can improve cardiac function after MI at the chronic stage in immunocompetent mice. Here, we show that SeV vectors efficiently infect CFs in vivo and reprogram them into iCMs, which existed for at least four weeks after MI, in fibroblast-linage tracing mice. Moreover, SeV-GMT improved cardiac function and reduced fibrosis and collagen I expression at 12 weeks after MI in immunocompetent mice. Thus, direct cardiac reprogramming with SeV vectors could be a promising therapy for MI.


Subject(s)
Cellular Reprogramming , Genetic Vectors , Myocardial Infarction/therapy , Sendai virus/genetics , Animals , Chronic Disease , Collagen Type I/metabolism , Fibroblasts , Fibrosis , Male , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Transcription Factors/genetics
8.
Mol Ther ; 28(1): 129-141, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31677955

ABSTRACT

Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.


Subject(s)
Cellular Reprogramming/genetics , Genetic Vectors , Genome, Viral/genetics , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Measles virus/genetics , RNA, Viral/genetics , Animals , Blood Donors , Cell Differentiation/genetics , Fibroblasts/metabolism , Genetic Therapy/methods , HEK293 Cells , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Sendai virus/genetics , T-Lymphocytes/metabolism , Transduction, Genetic , Transgenes
9.
Thorax ; 75(12): 1112-1115, 2020 12.
Article in English | MEDLINE | ID: mdl-32883885

ABSTRACT

When recombinant simian immunodeficiency virus (SIV) is pseudotyped with the F and HN glycoproteins from murine respiratory Sendai virus (rSIV.F/HN), it provides efficient lung cell targeting and lifelong transgene expression in the murine airways. We have shown that a single dose of rSIV.F/HN can direct stable expression of neutralising antibody against influenza in the murine airways and systemic circulation, and protects mice against two different influenza strains in lethal challenge experiments. These data suggest that rSIV.F/HN could be used as a vector for passive immunisation against influenza and other respiratory pathogens.


Subject(s)
Antibodies, Neutralizing/genetics , Genetic Vectors/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Orthomyxoviridae Infections/prevention & control , Simian Immunodeficiency Virus/genetics , Animals , Antibodies, Neutralizing/immunology , Gene Expression , Genetic Vectors/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus , Immunization, Passive , Immunoglobulin G , Mice , Sendai virus/genetics , Transgenes , Weight Loss
10.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463965

ABSTRACT

Defective viral genomes (DVGs) generated during RNA virus replication determine infection outcome by triggering innate immunity, diminishing virulence, and, in many cases, facilitating the establishment of persistent infections. Despite their critical role during virus-host interactions, the mechanisms regulating the production and propagation of DVGs are poorly understood. Visualization of viral genomes using RNA fluorescent in situ hybridization revealed a striking difference in the intracellular localization of DVGs and full-length viral genomes during infections with the paramyxovirus Sendai virus. In cells enriched in full-length virus, viral genomes clustered in a perinuclear region and associated with cellular trafficking machinery, including microtubules and the GTPase Rab11a. However, in cells enriched in DVGs, defective genomes distributed diffusely throughout the cytoplasm and failed to interact with this cellular machinery. Consequently, cells enriched in full-length genomes produced both DVG- and full-length-genome-containing viral particles, while DVG-high cells poorly produced viral particles yet strongly stimulated antiviral immunity. These findings reveal the selective production of both standard and DVG-containing particles by a subpopulation of infected cells that can be differentiated by the intracellular localization of DVGs. This study highlights the importance of considering this functional heterogeneity in analyses of virus-host interactions during infection.IMPORTANCE Defective viral genomes (DVGs) generated during Sendai virus infections accumulate in the cytoplasm of some infected cells and stimulate antiviral immunity and cell survival. DVGs are packaged and released as defective particles and have a significant impact on infection outcome. We show that the subpopulation of DVG-high cells poorly engages the virus packaging and budding machinery and do not effectively produce viral particles. In contrast, cells enriched in full-length genomes are the primary producers of both standard and defective viral particles during infection. This study demonstrates heterogeneity in the molecular interactions occurring within infected cells and highlights distinct functional roles for cells as either initiators of immunity or producers and perpetuators of viral particles depending on their content of viral genomes and their intracellular localization.


Subject(s)
Defective Viruses/genetics , Sendai virus/genetics , Virus Assembly/genetics , A549 Cells , Animals , Cell Line , Genome, Viral/genetics , Humans , In Situ Hybridization, Fluorescence/methods , Protein Transport/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Virion/genetics , Virus Replication/genetics
11.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30487274

ABSTRACT

Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.


Subject(s)
Cell Cycle Checkpoints/physiology , Vesiculovirus/genetics , Virus Replication/genetics , Animals , Antiviral Agents/pharmacology , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cytoplasm , G2 Phase/physiology , G2 Phase Cell Cycle Checkpoints/physiology , Gene Expression/genetics , Humans , Interferon Type I/metabolism , Interferon-gamma/metabolism , Interferons , M Phase Cell Cycle Checkpoints/physiology , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , RNA Viruses/immunology , RNA Viruses/metabolism , Sendai virus/genetics , Sendai virus/metabolism , Signal Transduction , Vesicular stomatitis Indiana virus/genetics , Vesiculovirus/metabolism , Viral Matrix Proteins/genetics , Virus Replication/immunology , Interferon Lambda
12.
Mol Reprod Dev ; 87(6): 663-665, 2020 06.
Article in English | MEDLINE | ID: mdl-32424848

ABSTRACT

Using auto-erasable Sendai virus vector, we generated ciPSC line. After several passages, virus was not present in ciPSCs by RT-PCR. ciPSCs from canine PBMCs had pluripotent state, differentiated all three germ layers in vitro, and had normal 78 XX karyotype. These results proved that PBMCs were one of the good cell sources to generate ciPSC lines from companion and patient dogs.


Subject(s)
Dogs , Induced Pluripotent Stem Cells/physiology , Leukocytes, Mononuclear/physiology , Primary Cell Culture , Sendai virus/physiology , Animals , Cell Differentiation/genetics , Cell Line, Transformed , Cell Transformation, Viral/genetics , Cellular Reprogramming/genetics , Female , Genetic Vectors/genetics , Induced Pluripotent Stem Cells/cytology , Karyotype , Leukocytes, Mononuclear/cytology , Primary Cell Culture/methods , Primary Cell Culture/veterinary , Sendai virus/genetics
13.
Mol Biol (Mosk) ; 54(6): 922-938, 2020.
Article in Russian | MEDLINE | ID: mdl-33276356

ABSTRACT

To design an effective and safe vaccine against betacoronaviruses, it is necessary to elicit a combination of strong humoral and cell-mediated immune responses as well as to minimize the risk of antibody-dependent enhancement of viral infection. This phenomenon was observed in animal trials of experimental vaccines against SARS-CoV-1 and MERS-CoV that were developed based on inactivated coronavirus or vector constructs expressing the spike protein (S) of the virion. The substitution and glycosylation of certain amino acids in the antigenic determinants of the S-protein, as well as its conformational changes, can lead to the same effect in a new experimental vaccine against SARS-CoV-2. This review outlines approaches for developing vaccines against the new SARS-CoV-2 coronavirus that are based on non-pathogenic viral vectors. For efficient prevention of infections caused by respiratory pathogens the ability of the vaccine to stimulate mucosal immunity in the respiratory tract is important. Such a vaccine can be developed using non-pathogenic Sendai virus vector, since it can be administered intranasally and induce a mucosal immune response that strengthens the antiviral barrier in the respiratory tract and provides reliable protection against infection. The mucosal immunity and the production of IgA antibodies accompanying its development reduces the likelihood of developing an antibody-dependent infection enhancement, which is usually associated only with immunopathological IgG antibodies.


Subject(s)
Antibody-Dependent Enhancement , Betacoronavirus , Coronavirus Infections/prevention & control , Sendai virus , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines , Animals , Antibodies, Viral , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Humans , SARS-CoV-2 , Sendai virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics
14.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021902

ABSTRACT

The phosphatase Cdc25A plays an important role in cell cycle regulation by dephosphorylating its substrates, such as cyclin-dependent kinases. In this study, we demonstrate that Cdc25A negatively regulates RIG-I-mediated antiviral signaling. We found that ectopic expression of Cdc25A in 293T cells inhibits the activation of beta interferon (IFN-ß) induced by Sendai virus and poly(I·C), while knockdown of Cdc25A enhances the transcription of IFN-ß stimulated by RNA virus infection. The inhibitory effect of Cdc25A on the antiviral immune response is mainly dependent on its phosphatase activity. Data from a luciferase assay indicated that Cdc25A can inhibit TBK1-mediated activation of IFN-ß. Further analysis indicated that Cdc25A can interact with TBK1 and reduce the phosphorylation of TBK1 at S172, which in turn decreases the phosphorylation of its downstream substrate IRF3. Consistently, knockdown of Cdc25A upregulates the phosphorylation of both TBK1-S172 and IRF3 in Sendai virus-infected or TBK1-transfected 293T cells. In addition, we confirmed that Cdc25A can directly dephosphorylate TBK1-S172-p. These results demonstrate that Cdc25A inhibits the antiviral immune response by reducing the active form of TBK1. Using herpes simplex virus 1 (HSV-1) infection, an IFN-ß reporter assay, and reverse transcription-quantitative PCR (RT-qPCR), we demonstrated that Cdc25A can also inhibit DNA virus-induced activation of IFN-ß. Using a vesicular stomatitis virus (VSV) infection assay, we confirmed that Cdc25A can repress the RIG-I-like receptor (RLR)-mediated antiviral immune response and influence the antiviral status of cells. In conclusion, we demonstrate that Cdc25A negatively regulates the antiviral immune response by inhibiting TBK1 activity.IMPORTANCE The RLR-mediated antiviral immune response is critical for host defense against RNA virus infection. However, the detailed mechanism for balancing the RLR signaling pathway in host cells is not well understood. We found that the phosphatase Cdc25A negatively regulates the RNA virus-induced innate immune response. Our studies indicate that Cdc25A inhibits the RLR signaling pathway via its phosphatase activity. We demonstrated that Cdc25A reduces TBK1 activity and consequently restrains the activation of IFN-ß transcription as well as the antiviral status of nearby cells. We showed that Cdc25A can also inhibit DNA virus-induced activation of IFN-ß. Taken together, our findings uncover a novel function and mechanism for Cdc25A in regulating antiviral immune signaling. These findings reveal Cdc25A as an important negative regulator of antiviral immunity and demonstrate its role in maintaining host cell homeostasis following viral infection.


Subject(s)
Herpesvirus 1, Human/genetics , Interferon-beta/genetics , Protein Serine-Threonine Kinases/genetics , Sendai virus/genetics , Vesiculovirus/genetics , cdc25 Phosphatases/genetics , A549 Cells , Cell Cycle , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Herpesvirus 1, Human/immunology , Host-Pathogen Interactions , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-beta/immunology , Luciferases/genetics , Luciferases/immunology , Phosphorylation , Poly I-C/genetics , Poly I-C/immunology , Protein Serine-Threonine Kinases/immunology , Receptors, Immunologic , Sendai virus/immunology , Signal Transduction , Vesiculovirus/immunology , cdc25 Phosphatases/immunology
15.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021903

ABSTRACT

Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1ß (IL-1ß) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1ß maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(-)] induced markedly greater amounts of IL-1ß than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(-)-induced IL-1ß secretion, indicating an essential role for NLRP3 in SeV V(-)-induced IL-1ß activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1ß secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1ß activation.IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


Subject(s)
Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respirovirus Infections/metabolism , Sendai virus/metabolism , Viral Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , HEK293 Cells , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Macrophages/pathology , Macrophages/virology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Multimerization/genetics , Respirovirus Infections/genetics , Respirovirus Infections/pathology , Sendai virus/genetics , THP-1 Cells , Viral Proteins/genetics
16.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237838

ABSTRACT

One of the first defenses against infecting pathogens is the innate immune system activated by cellular recognition of pathogen-associated molecular patterns (PAMPs). Although virus-derived RNA species, especially copyback (cb)-type defective interfering (DI) genomes, have been shown to serve as real PAMPs, which strongly induce interferon-beta (IFN-ß) during mononegavirus infection, the mechanisms underlying DI generation remain unclear. Here, for the first time, we identified a single amino acid substitution causing production of cbDI genomes by successful isolation of two distinct types of viral clones with cbDI-producing and cbDI-nonproducing phenotypes from the stock Sendai virus (SeV) strain Cantell, which has been widely used in a number of studies on antiviral innate immunity as a representative IFN-ß-inducing virus. IFN-ß induction was totally dependent on the presence of a significant amount of cbDI genome-containing viral particles (DI particles) in the viral stock, but not on deficiency of the IFN-antagonistic viral accessory proteins C and V. Comparison of the isolates indicated that a single amino acid substitution found within the N protein of the cbDI-producing clone was enough to cause the emergence of DI genomes. The mutated N protein of the cbDI-producing clone resulted in a lower density of nucleocapsids than that of the DI-nonproducing clone, probably causing both production of the DI genomes and their formation of a stem-loop structure, which serves as an ideal ligand for RIG-I. These results suggested that the integrity of mononegaviral nucleocapsids might be a critical factor in avoiding the undesirable recognition of infection by host cells.IMPORTANCE The type I interferon (IFN) system is a pivotal defense against infecting RNA viruses that is activated by sensing viral RNA species. RIG-I is a major sensor for infection with most mononegaviruses, and copyback (cb)-type defective interfering (DI) genomes have been shown to serve as strong RIG-I ligands in real infections. However, the mechanism underlying production of cbDI genomes remains unclear, although DI genomes emerge as the result of an error during viral replication with high doses of viruses. Sendai virus has been extensively studied and is unique in that its interaction with innate immunity reveals opposing characteristics, such as high-level IFN-ß induction and strong inhibition of type I IFN pathways. Our findings provide novel insights into the mechanism of production of mononegaviral cbDI genomes, as well as virus-host interactions during innate immunity.


Subject(s)
Amino Acid Substitution/immunology , Defective Viruses/genetics , Interferon-beta/metabolism , Nucleoproteins/immunology , Paramyxovirinae/genetics , Paramyxovirinae/immunology , Sendai virus/genetics , Amino Acid Substitution/genetics , Animals , Cell Line , DEAD Box Protein 58 , Defective Viruses/immunology , Female , Gene Expression Regulation , Genome, Viral , HeLa Cells , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-3/analysis , Interferon Type I/immunology , Mice , Mice, Inbred C57BL , Mutation , Nucleocapsid/metabolism , Nucleoproteins/genetics , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , RNA, Viral/genetics , Receptors, Immunologic , Sendai virus/immunology , Virus Replication
17.
FASEB J ; 32(10): 5238-5249, 2018 10.
Article in English | MEDLINE | ID: mdl-29688809

ABSTRACT

Ubiquitination and deubiquitination are important post-translational regulatory mechanisms responsible for fine tuning the antiviral signaling. In this study, we identified a deubiquitinase, the ubiquitin-specific peptidase 7/herpes virus associated ubiquitin-specific protease (USP7/HAUSP) as an important negative modulator of virus-induced signaling. Overexpression of USP7 suppressed Sendai virus and polyinosinic-polycytidylic acid and poly(deoxyadenylic-deoxythymidylic)-induced ISRE and IFN-ß activation, and enhanced virus replication. Knockdown or knockout of endogenous USP7 expression had the opposite effect. Coimmunoprecipitation assays showed that USP7 physically interacted with tripartite motif (TRIM)27. This interaction was enhanced after SeV infection. In addition, TNF receptor-associated factor family member-associated NF-kappa-B-binding kinase (TBK)-1 was pulled down in the TRIM27-USP7 complex. Overexpression of USP7 promoted the ubiquitination and degradation of TBK1 through promoting the stability of TRIM27. Knockout of endogenous USP7 led to enhanced TRIM27 degradation and reduced TBK1 ubiquitination and degradation, resulting in enhanced type I IFN signaling. Our findings suggest that USP7 acts as a negative regulator in antiviral signaling by stabilizing TRIM27 and promoting the degradation of TBK1.-Cai, J., Chen, H.-Y., Peng, S.-J., Meng, J.-L., Wang, Y., Zhou, Y., Qian, X.-P., Sun, X.-Y., Pang, X.-W., Zhang, Y., Zhang, J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling.


Subject(s)
DNA-Binding Proteins/metabolism , Interferon Type I/metabolism , Nuclear Proteins/metabolism , Respirovirus Infections/metabolism , Sendai virus/metabolism , Signal Transduction , Ubiquitin-Specific Peptidase 7/metabolism , DNA-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Interferon Type I/genetics , Nuclear Proteins/genetics , Proteolysis , Respirovirus Infections/genetics , Sendai virus/genetics , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitination
18.
Cell Physiol Biochem ; 50(4): 1318-1331, 2018.
Article in English | MEDLINE | ID: mdl-30355953

ABSTRACT

BACKGROUND/AIMS: Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, disease modeling, and drug development. Thus, generation of non-integration and feeder-free iPSCs is highly desirable for clinical applications. Peripheral blood mononuclear cells (PBMCs) are an attractive resource for cell reprogramming because of their properties of easy accessibility and the limited invasiveness of blood collection. However, derivation of iPSCs is technically demanding due to the low reprogramming efficiency and nonadherent features of PBMCs. METHODS: iPSCs were generated from PBMCs using non-integrative Sendai viruses carrying the reprogramming factors Oct4, Sox2, Klf4, and cMyc. The derived iPSCs were fully characterized at the levels of gene and protein, and then they were transplanted into immunocompromised mice for evaluation of in vivo differentiation potential. Three types of extracellular substrates (Geltrex, vitronectin, and rhLaminn-521) were tested for their influences on cell reprogramming under feeder-free conditions. We also sought to establish approaches to efficient cell recovery post-thaw and single cell passaging of iPSCs employing Rock inhibitors. RESULTS: iPSCs were efficiently generated from PBMCs under feeder-free conditions. The derived iPSCs proved to be pluripotent and transgene-free. Furthermore, they demonstrated multi-lineage differentiation potentials when transplanted into immunocompromised mice. Among the three substrates, Geltrex and rhLaminin-521 could effectively support the initial cell reprogramming process, but vitronectin failed. However, the vitronectin, similar to Geltrex and rhLaminin-521, could effectively maintain cell growth and expansion of passaged iPSCs. In addition, RevitaCell supplement (RVC) was more potent on cell recovery post-thaw than Y-27632. And RVC and Y-27632 could significantly increase the cell survival when the cells were passaged in single cells, and they showed comparable effectiveness on cell recovery. CONCLUSION: We have successfully derived non-integration and feeder-free human iPSCs from peripheral blood cells, and established effective strategies for efficient cell recovery and single cell passaging. This study will pave the way to the derivation of clinical-grade human iPSCs for future clinical applications.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/cytology , Sendai virus/genetics , Amides/pharmacology , Animals , Cell Survival/drug effects , Cell Transdifferentiation , Cellular Reprogramming , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Immunocompromised Host , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Karyotyping , Kinesins/genetics , Kinesins/metabolism , Kruppel-Like Factor 4 , Leukocytes, Mononuclear/metabolism , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Teratoma/pathology
19.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28250126

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.


Subject(s)
Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Sendai virus/genetics , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Genetic Vectors , Immunization , Immunoglobulin A/immunology , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/physiology , Sendai virus/immunology , Vaccines, Attenuated , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Fusion Proteins/genetics , Virus Replication
20.
Appl Microbiol Biotechnol ; 102(14): 6221-6234, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29855689

ABSTRACT

Protein expression in the milk of transgenic farmed animals offers a cost-effective system for producing therapeutics. However, transgenesis in farmed animals is not only cumbersome but also involves risk of potential hazard by germline gene integration, due to interruptions caused by the transgene in the native genome. Avoiding germline gene integration, we have delivered buffalo ß-casein promoter-driven transgene construct entrapped in virosomes directly in the milk gland through intraductal perfusion delivery. Virosomes were generated from purified Sendai viral membrane, containing hemagglutinin-neuraminidase (HN) and fusion factor (F) proteins on surface (HNF-Virosomes) which initiate membrane fusion, devoid of any viral nucleic acids. Intraductal delivery of HNF-Virosomes predominantly transfected luminal epithelial cells lining the milk duct and buffalo ß-casein promoter of the construct ensured mammary luminal epithelial cell specific expression of the transgene. Mammary epithelial cells expressed EGFP at lactation when egfp was used as a transgene. Similarly, human interferon-γ (hIFN-γ) was expressed in the mammary gland as well as in the milk when hIFN-γ was used as a transgene. This combinatorial approach of using Sendai viral membrane-derived virosomes for entrapment and delivery of the transgene and using buffalo ß-casein promoter for mammary gland specific gene expression provided a better option for generating therapeutic proteins in milk, bypassing germline gene integration avoiding risks associated with animal bioreactor generated through germline gene integration.


Subject(s)
Biological Therapy/methods , Buffaloes/genetics , Gene Expression/genetics , Lactation/genetics , Mammary Glands, Animal/metabolism , Milk/chemistry , Transgenes/genetics , Animals , Caseins/genetics , Female , Humans , Promoter Regions, Genetic/genetics , Sendai virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL