Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 39(12): e101732, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32378734

ABSTRACT

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Subject(s)
G(M3) Ganglioside/metabolism , Monocytes/metabolism , Obesity/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Animals , G(M3) Ganglioside/chemistry , G(M3) Ganglioside/genetics , HEK293 Cells , Humans , Mice , Mice, Mutant Strains , Monocytes/chemistry , Obesity/genetics , Protein Multimerization , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics
2.
Chemistry ; 30(32): e202400429, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38587187

ABSTRACT

Agonists of Toll like receptors (TLRs) have attracted interest as adjuvants and immune modulators. A crystal structure of TLR4/MD2 with E. coli LPS indicates that the fatty acid at C-2 of the lipid A component of LPS induces dimerization of two TLR4-MD2 complexes, which in turn initiates cell signaling leading to the production of (pro)inflammatory cytokines. To probe the importance of the (R)-3-hydroxymyristate at C-2 of lipid A, a range of bis- and mono-phosphoryl lipid A derivatives with different modifications at C-2 were prepared by a strategy in which 2-methylnaphthyl ethers were employed as permanent protecting group that could be readily removed by catalytic hydrogenation. The C-2 amine was protected as 9-fluorenylmethyloxycarbamate, which at a later stage could be removed to give a free amine that was modified by different fatty acids. LPS and the synthetic lipid As induced the same cytokines, however, large differences in activity were observed. A compound having a hexanoyl moiety at C-2 still showed agonistic properties, but further shortening to a butanoyl abolished activity. The modifications had a larger influence on monophosphoryl lipid As. The lipid As having a butanoyl moiety at C-2 could selectively antagonize TRIF associated cytokines induced by LPS or lipid A.


Subject(s)
Cytokines , Lipid A , Lipopolysaccharides , Lipid A/chemistry , Lipid A/pharmacology , Lipid A/analogs & derivatives , Lipid A/chemical synthesis , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Humans , Lymphocyte Antigen 96/metabolism , Lymphocyte Antigen 96/chemistry , Drug Design , Structure-Activity Relationship , Signal Transduction/drug effects
3.
Glycoconj J ; 41(2): 119-131, 2024 04.
Article in English | MEDLINE | ID: mdl-38642279

ABSTRACT

Gram-negative bacteria living in marine waters have evolved peculiar adaptation strategies to deal with the numerous stress conditions that characterize aquatic environments. Among the multiple mechanisms for efficient adaptation, these bacteria typically exhibit chemical modifications in the structure of the lipopolysaccharide (LPS), which is a fundamental component of their outer membrane. In particular, the glycolipid anchor to the membrane of marine bacteria LPSs, i.e. the lipid A, frequently shows unusual chemical structures, which are reflected in equally singular immunological properties with potential applications as immune adjuvants or anti-sepsis drugs. In this work, we determined the chemical structure of the lipid A from Cellulophaga pacifica KMM 3664T isolated from the Sea of Japan. This bacterium showed to produce a heterogeneous mixture of lipid A molecules that mainly display five acyl chains and carry a single phosphate and a D-mannose disaccharide on the glucosamine backbone. Furthermore, we proved that C. pacifica KMM 3664T LPS acts as a weaker activator of Toll-like receptor 4 (TLR4) compared to the prototypical enterobacterial Salmonella typhimurium LPS. Our results are relevant to the future development of novel vaccine adjuvants and immunomodulators inspired by marine LPS chemistry.


Subject(s)
Lipid A , Lipid A/chemistry , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/chemistry , Animals , Lipopolysaccharides/chemistry , Mice
4.
Nature ; 553(7686): 77-81, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300007

ABSTRACT

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , Cercocebus atys/genetics , Cercocebus atys/virology , Genetic Predisposition to Disease , Genome/genetics , Host Specificity/genetics , Simian Immunodeficiency Virus , Acquired Immunodeficiency Syndrome/virology , Amino Acid Sequence , Animals , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cercocebus atys/immunology , Exons/genetics , Female , Frameshift Mutation/genetics , Genetic Variation , Genomics , HIV/pathogenicity , Humans , Macaca/virology , Sequence Deletion , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Species Specificity , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Transcriptome/genetics , Whole Genome Sequencing
5.
Angew Chem Int Ed Engl ; 63(39): e202408421, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38870340

ABSTRACT

Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing ß,ß-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNß(1↔1')ßGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Lipopolysaccharides/pharmacology , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Glycolipids/chemistry , Glycolipids/pharmacology
6.
Biochem Biophys Res Commun ; 589: 35-40, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34891039

ABSTRACT

Porphyromonas gingivalis (Pg) a major periodontal pathogen involved in periodontal disease development and progression. Moreover, Pg has two fimbriae surface proteins (FimA and Mfa1) that are genetically distinct and make-up the fimbrial shaft which in-turn form crucial attachment to oral bacteria and multiple host cells. However, unlike FimA, Mfa1 attachment to non-periodontal cells has not been fully elucidated. Considering Pg-associated periodontal disease contributes to pulmonary disease development, we investigated whether Mfa1 can functionally interact with human bronchial epithelial cells and, likewise, trigger a functional response. Initially, we simulated molecular docking and performed both luciferase and neutralization assays to confirm Mfa1-related functional interaction. Subsequently, we treated BEAS-2B cells with purified Mfa1 and performed cytokine quantification through real time-PCR and ELISA to establish Mfa1-related functional response. We found that both Mfa1-TLR2 and Mfa1-TLR4 docking is possible, however, only Mfa1-TLR2 showed a functional interaction. Additionally, we observed that both IL-8 and IL-6 gene expression and protein levels were induced confirming Mfa1-related functional response. Taken together, we propose that BEAS-2B human bronchial epithelial cells are able to recognize Pg Mfa1 and induce both IL-8 and IL-6 inflammatory responses.


Subject(s)
Bacterial Proteins/metabolism , Bronchi/pathology , Epithelial Cells/metabolism , Fimbriae Proteins/metabolism , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Porphyromonas gingivalis/physiology , Toll-Like Receptor 2/metabolism , Cell Line , Fimbriae, Bacterial/metabolism , Humans , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Porphyromonas gingivalis/chemistry , Protein Binding , Protein Interaction Mapping , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism
7.
Pharmacol Res ; 175: 105960, 2022 01.
Article in English | MEDLINE | ID: mdl-34718133

ABSTRACT

Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM) and a leading cause of blindness worldwide. Evidence has shown that DR is an inflammatory disease with hyperglycemia playing a causative role in the development of its main features, including inflammation, cellular apoptosis, neurodegeneration, oxidative stress, and neovascularization. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors (PRRs) responsible for the initiation of inflammatory and immune responses. TLR4 identifies both endogenous and exogenous ligands and is associated with various physiological and pathological pathways in the body. While the detailed pathophysiology of DR is still unclear, increasing data suggests a crucial role for TLR4 in the development of DR. Due to hyperglycemia, TLR4 expression increases in diabetic retina, which activates various pathways leading to DR. Considering the role of TLR4 in DR, several studies have focused on the association of TLR4 polymorphisms and risk of DR development. Moreover, evidence concerning the effect of microRNAs in the pathogenesis of DR, through their interaction with TLR4, indicates the determinant role of TLR4 in this disease. Of note, several agents have proven as effective in alleviating DR through the inhibition of the TLR4 pathway, suggesting new avenues in DR treatment. In this review, we provided a brief overview of the TLR4 structure and biological function and a more comprehensive discussion about the mechanisms of TLR4 activation in DR. Furthermore, we summarized the relationship between TLR4 polymorphisms and risk of DR and the relationship between microRNAs and TLR4 in DR. Finally, we discussed the current progress in designing TLR4 inhibitors, which could be helpful in DR clinical management.


Subject(s)
Diabetic Retinopathy/metabolism , Toll-Like Receptor 4/metabolism , Animals , Humans , Toll-Like Receptor 4/chemistry
8.
Fish Shellfish Immunol ; 130: 538-549, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152800

ABSTRACT

In the current study, full-length Toll-like receptor 4 (TLR4) cDNA was cloned and characterised in Tor putitora, an important fish inhibiting Himalayan rivers. The complete coding sequence of TpTLR4 is 2457 bp with nine key structural domains, including six leucine-rich repeats (LRRs). The phylogenetic tree revealed that TpTLR4 showed the closest relationship with TLR4 of Cyprinus carpio (96%), Labeo rohita (91%) and Megalobrama amblycephala (88%), all belonging to the Cyprinidae family. CELLO2GO tool revealed that TpTLR4 protein is highly localised in the plasma (67.7%), and the protein has a strong association with myeloid differentiation primary response 88 (MYD88) followed by Tumor necrosis factor receptor-associated factor (TRAF) family. In the toll-interleukin-1 receptor (TIR) domain of TpTLR4, the proline is replaced by the alanine amino acid, thus may give plasticity to the receptor to recognise both bacterial and viral ligands. Molecular docking has revealed that TpTLR4 showed the strongest affinity towards poly (I:C) with the binding energy of -6.1 kcal/mol and five hydrogen bonds among all ligands. Based on our molecular docking results, it can be presumed that TpTLR4 can sense bacterial, fungal and viral molecular patterns with binding sites mainly present in the TpTLR4 LRR9 motif, which spans between 515 and 602 amino acids. Tor putiora TLR4 transcript was ubiquitously expressed in all the tested fish tissues. Although, transcript level was found to be highest in blood and spleen followed by the kidney. The TpTLR4 transcripts showed peak expression in spleen and kidney at 12 h post-injection (hpi) (p < 0.05) of poly (I:C). The constitutive expression of TpTLR4 in various tissues, up-regulation in different tissues and strong binding affinities with poly (I:C) indicate that TpTLR4 may play an essential role in sensing pathogen-associated molecular patterns (PAMPs), particularly of viral origin.


Subject(s)
Carps , Cyprinidae , Alanine , Amino Acid Sequence , Animals , Binding Sites , Carps/metabolism , Cyprinidae/genetics , Cyprinidae/metabolism , DNA, Complementary/genetics , Fish Proteins/chemistry , Leucine/metabolism , Ligands , Molecular Docking Simulation , Myeloid Differentiation Factor 88/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phylogeny , Proline/genetics , Proline/metabolism , Receptors, Interleukin-1/genetics , Toll-Like Receptor 4/chemistry , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
9.
J Biol Chem ; 295(51): 17842-17851, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33454018

ABSTRACT

Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/metabolism , Animals , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Humans , Lung/immunology , Lung/metabolism , Lymphocyte Antigen 96/chemistry , Lymphocyte Antigen 96/metabolism , Neutrophils/metabolism , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism
10.
J Biol Chem ; 295(42): 14325-14342, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32796029

ABSTRACT

Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines, including type I interferons (IFN-I). Downstream of TLR4, IFNß secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear whether this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and depends on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKß, respectively. TLR2-stimulated monocytes produced modest IFNß levels that caused productive downstream signaling, reflected by STAT1 phosphorylation and expression of numerous interferon-stimulated genes. Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.


Subject(s)
Interferon Type I/metabolism , Toll-Like Receptor 2/metabolism , Cell Differentiation , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon-beta/genetics , Interferon-beta/metabolism , Lipopeptides/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism
11.
BMC Biotechnol ; 21(1): 38, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090414

ABSTRACT

BACKGROUND: Neuroinflammation has been identified to be the key player in most neurodegenerative diseases. If neuroinflammation is left to be unresolved, chronic neuroinflammation will be establish. Such situation is due to the overly-activated microglia which have the tendency to secrete an abundance amount of pro-inflammatory cytokines into the neuron microenvironment. The abundance of pro-inflammatory cytokines will later cause toxic and death to neurons. Toll-like receptor 4 (TLR4)/MD-2 complex found on the cell surface of microglia is responsible for the attachment of LPS and activation of nuclear factor-κB (NF-κB) downstream signalling pathway. Albeit vitexin has been shown to possess anti-inflammatory property, however, little is known on its ability to bind at the binding site of TLR4/MD-2 complex of microglia as well as to be an antagonist for LPS. RESULTS: The present study reveals that both vitexin and donepezil are able to bind at the close proximity of LPS binding site located at the TLR4/MD-2 complex with the binding energy of - 4.35 and - 9.14 kcal/mol, respectively. During molecular dynamic simulations, both vitexin and donepezil formed stable complex with TLR4/MD-2 throughout the 100 ns time length with the root mean square deviation (RMSD) values of 2.5 Å and 4.0 Å, respectively. The root mean square fluctuation (RMSF) reveals that both compounds are stable. Interestingly, the radius of gyration (rGyr) for donepezil shows notable fluctuations when compare with vitexin. The MM-GBSA results showed that vitexin has higher binding energy in comparison with donepezil. CONCLUSIONS: Taken together, the findings suggest that vitexin is able to bind at the binding site of TLR4/MD-2 complex with more stability than donepezil throughout the course of 100 ns simulation. Hence, vitexin has the potential to be an antagonist candidate for LPS.


Subject(s)
Anti-Inflammatory Agents/chemistry , Apigenin/chemistry , Microglia/immunology , Anti-Inflammatory Agents/pharmacology , Apigenin/pharmacology , Humans , Lipopolysaccharides/adverse effects , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Microglia/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , NF-kappa B/chemistry , NF-kappa B/immunology , Neuroinflammatory Diseases/immunology , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/immunology
12.
Arch Biochem Biophys ; 702: 108830, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33727039

ABSTRACT

Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.


Subject(s)
NF-kappa B/metabolism , Peroxiredoxin VI/pharmacology , Radiation-Protective Agents/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , 3T3 Cells , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Mice , Models, Molecular , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Peroxiredoxin VI/chemistry , Peroxiredoxin VI/metabolism , Protein Conformation , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/metabolism , Signal Transduction/radiation effects , Toll-Like Receptor 4/chemistry
13.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557133

ABSTRACT

The interaction and crosstalk of Toll-like receptors (TLRs) is an established pathway in which the innate immune system recognises and fights pathogens. In a single nucleotide polymorphisms (SNP) analysis of an Indian cohort, we found evidence for both TLR4-399T and TRL8-1A conveying increased susceptibility towards tuberculosis (TB) in an interdependent manner, even though there is no established TLR4 ligand present in Mycobacterium tuberculosis (Mtb), which is the causative pathogen of TB. Docking studies revealed that TLR4 and TLR8 can build a heterodimer, allowing interaction with TLR8 ligands. The conformational change of TLR4-399T might impair this interaction. With immunoprecipitation and mass spectrometry, we precipitated TLR4 with TLR8-targeted antibodies, indicating heterodimerisation. Confocal microscopy confirmed a high co-localisation frequency of TLR4 and TLR8 that further increased upon TLR8 stimulation. The heterodimerisation of TLR4 and TLR8 led to an induction of IL12p40, NF-κB, and IRF3. TLR4-399T in interaction with TLR8 induced an increased NF-κB response as compared to TLR4-399C, which was potentially caused by an alteration of subsequent immunological pathways involving type I IFNs. In summary, we present evidence that the heterodimerisation of TLR4 and TLR8 at the endosome is involved in Mtb recognition via TLR8 ligands, such as microbial RNA, which induces a Th1 response. These findings may lead to novel targets for therapeutic interventions and vaccine development regarding TB.


Subject(s)
Host-Pathogen Interactions/immunology , Immunity, Innate , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 8/metabolism , Tuberculosis/immunology , Tuberculosis/metabolism , Alleles , Biomarkers , Case-Control Studies , Cell Line , Cohort Studies , Genotype , Host-Pathogen Interactions/genetics , Humans , Mass Spectrometry , Models, Molecular , Polymorphism, Single Nucleotide , Protein Conformation , Structure-Activity Relationship , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 8/chemistry , Tuberculosis/microbiology
14.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204506

ABSTRACT

Ergosta-7, 9 (11), 22-trien-3ß-ol (EK100) was isolated from Cordyceps militaris, which has been used as a traditional anti-inflammatory medicine. EK100 has been reported to attenuate inflammatory diseases, but its anti-inflammatory mechanism is still unclear. We were the first to investigate the effect of EK100 on the Toll-like receptor 4 (TLR4)/nuclear factor of the κ light chain enhancer of B cells (NF-κB) signaling in the lipopolysaccharide (LPS)-stimulated RAW264.7 cells and the green fluorescent protein (GFP)-labeled NF-κB reporter gene of Drosophila. EK100 suppressed the release of the cytokine and attenuated the mRNA and protein expression of pro-inflammatory mediators. EK100 inhibited the inhibitor kappa B (IκB)/NF-κB signaling pathway. EK100 also inhibited phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) signal transduction. Moreover, EK100 interfered with LPS docking to the LPS-binding protein (LBP), transferred to the cluster of differentiation 14 (CD14), and bonded to TLR4/myeloid differentiation-2 (MD-2) co-receptors. Compared with the TLR4 antagonist, resatorvid (CLI-095), and dexamethasone (Dexa), EK100 suppressed the TLR4/AKT signaling pathway. In addition, we also confirmed that EK100 attenuated the GFP-labeled NF-κB reporter gene expression in Drosophila. In summary, EK100 might alter LPS docking to LBP, CD14, and TLR4/MD-2 co-receptors, and then it suppresses the TLR4/NF-κB inflammatory pathway in LPS-stimulated RAW264.7 cells and Drosophila.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drosophila/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocyte Antigen 96/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharide Receptors/chemistry , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Lymphocyte Antigen 96/chemistry , Macrophages/immunology , Macrophages/metabolism , Mice , Models, Molecular , Molecular Conformation , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Protein Binding , Structure-Activity Relationship , Toll-Like Receptor 4/chemistry
15.
Molecules ; 26(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34577169

ABSTRACT

Artemisinin (also known as Qinghaosu), an active component of the Qinghao extract, is widely used as antimalarial drug. Previous studies reveal that artemisinin and its derivatives also have effective anti-inflammatory and immunomodulatory properties, but the direct molecular target remains unknown. Recently, several reports mentioned that myeloid differentiation factor 2 (MD-2, also known as lymphocyte antigen 96) may be the endogenous target of artemisinin in the inhibition of lipopolysaccharide signaling. However, the exact interaction between artemisinin and MD-2 is still not fully understood. Here, experimental and computational methods were employed to elucidate the relationship between the artemisinin and its inhibition mechanism. Experimental results showed that artemether exhibit higher anti-inflammatory activity performance than artemisinin and artesunate. Molecular docking results showed that artemisinin, artesunate, and artemether had similar binding poses, and all complexes remained stable throughout the whole molecular dynamics simulations, whereas the binding of artemisinin and its derivatives to MD-2 decreased the TLR4(Toll-Like Receptor 4)/MD-2 stability. Moreover, artemether exhibited lower binding energy as compared to artemisinin and artesunate, which is in good agreement with the experimental results. Leu61, Leu78, and Ile117 are indeed key residues that contribute to the binding free energy. Binding free energy analysis further confirmed that hydrophobic interactions were critical to maintain the binding mode of artemisinin and its derivatives with MD-2.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Lymphocyte Antigen 96/antagonists & inhibitors , Lymphocyte Antigen 96/chemistry , Animals , Artemether/pharmacology , Artesunate/pharmacology , Binding Sites/drug effects , Cell Line , Cell Survival/drug effects , Fatty Acid-Binding Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Immunomodulation/drug effects , In Vitro Techniques , Lipopolysaccharides/toxicity , Mice , Microglia/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitric Oxide/metabolism , Protein Binding , Thermodynamics , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
J Recept Signal Transduct Res ; 40(4): 324-338, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32223496

ABSTRACT

Toll-like receptor 4 (TLR4) pathway is one of the major pathways that mediate the inflammation in human body. There are different anti-inflammatory drugs available in the market which specifically act on different signaling proteins of TLR4 pathway but they do have few side effects and other limitations for intended use in human body. In this study, Curcumin and its different analogs have been analyzed as the inhibitors of signaling proteins, i.e. Cycloxygenase-2 (COX-2), inhibitor of kappaß kinase (IKK) and TANK binding kinase-1 (TBK-1) of TLR4 pathway using different computational tools. Initially, three compounds were selected for respective target based on free binding energy among which different compounds were reported to have better binding affinity than commercially available drug (control). Upon continuous computational exploration with induced fit docking (IFD), 6-Gingerol, Yakuchinone A and Yakuchinone B were identified as the best inhibitors of COX-2, IKK, and TBK-1 respectively. Then their drug-like potentialities were analyzed in different experiments where they were also predicted to perform well. Hopefully, this study will uphold the efforts of researchers to identify anti-inflammatory drugs from natural sources.


Subject(s)
Computational Chemistry , Curcumin/chemistry , Inflammation/drug therapy , Toll-Like Receptor 4/chemistry , Catechols/chemistry , Catechols/isolation & purification , Catechols/therapeutic use , Curcumin/analogs & derivatives , Curcumin/isolation & purification , Curcumin/therapeutic use , Cyclooxygenase 2/genetics , Diarylheptanoids/chemistry , Diarylheptanoids/isolation & purification , Diarylheptanoids/therapeutic use , Fatty Alcohols/chemistry , Fatty Alcohols/isolation & purification , Fatty Alcohols/therapeutic use , Guaiacol/analogs & derivatives , Guaiacol/chemistry , Guaiacol/isolation & purification , Guaiacol/therapeutic use , Humans , I-kappa B Kinase/genetics , Inflammation/genetics , Lipopolysaccharides/chemistry , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Pharmaceutical Preparations/chemistry , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics
17.
FASEB J ; 33(12): 14528-14541, 2019 12.
Article in English | MEDLINE | ID: mdl-31675483

ABSTRACT

General anesthesia has been the requisite component of surgical procedures for over 150 yr. Although immunomodulatory effects of volatile anesthetics have been growingly appreciated, the molecular mechanism has not been understood. In septic mice, the commonly used volatile anesthetic isoflurane attenuated the production of 5-lipoxygenase products and IL-10 and reduced CD11b and intercellular adhesion molecule-1 expression on neutrophils, suggesting the attenuation of TLR4 signaling. We confirmed the attenuation of TLR4 signaling in vitro and their direct binding to TLR4-myeloid differentiation-2 (MD-2) complex by photolabeling experiments. The binding sites of volatile anesthetics isoflurane and sevoflurane were located near critical residues for TLR4-MD-2 complex formation and TLR4-MD-2-LPS dimerization. Additionally, TLR4 activation was not attenuated by intravenous anesthetics, except for a high concentration of propofol. Considering the important role of TLR4 system in the perioperative settings, these findings suggest the possibility that anesthetic choice may modulate the outcome in patients or surgical cases in which TLR4 activation is expected.-Okuno, T., Koutsogiannaki, S., Hou, L., Bu, W., Ohto, U., Eckenhoff, R. G., Yokomizo, T., Yuki, K. Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Toll-like receptor 4 system.


Subject(s)
Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Sevoflurane/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Binding Sites , Cells, Cultured , Lymphocyte Antigen 96/chemistry , Lymphocyte Antigen 96/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Protein Binding , Protein Multimerization , Toll-Like Receptor 4/chemistry
18.
J Nat Prod ; 83(4): 1190-1200, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32150408

ABSTRACT

Citral ((2E)-3,7-dimethylocta-2,6-dienal), a bioactive component of lemongrass, inhibits oxidant activity, nuclear factor kappa B (NF-κB) activation, and cyclooxygenase-2 (COX-2) expression, even as it activates peroxisome proliferator-activated receptor (PPAR)-α and γ. Additionally, citral produces long-lasting inhibition of transient receptor potential (TRP) channels that are found in sensory neurons, such as TRPV1-3 and TRPM8, while it transiently blocks TRPV4 and TRPA1. Here, the effect of citral in experimental models of acute inflammation and hyperalgesia in mice, and the underlying citral mechanisms of action were investigated. ADMET properties and molecular targets were predicted using the online server. The immunomodulatory and antihyperalgesic effects of citral were evaluated, using mechanical and thermal stimuli, at different time-points on carrageenan, lipopolysaccharides (LPS), and zymosan-induced paw edema and hyperalgesia in mice. ADMET analysis ensures that the citral has not violated Lipinski's rule of five, indicating its safety consumption, and molecular target prediction software identified that citral is a potential fatty acid amide hydrolase (FAAH) inhibitor. Oral treatment with citral (50-300 mg/kg) significantly inhibited carrageenan-induced paw edema and thermal allodynia. Furthermore, citral modulated the inflammation induced by LPS and zymosan, toll-like receptor (TLR) 4, and TLR2/dectin-1 ligands, respectively. Moreover, pretreatment with cannabinoid receptor type 2 (CB2R) antagonists and ATP-sensitive K+ channel inhibitor, but not with a cannabinoid receptor type 1 (CB1R) antagonist, significantly reversed the anti-inflammatory effect of citral. Intriguingly, citral did not cause any relevant action in the central nervous system, and it was safe when assessed in a 14 day toxicity assay in male mice. Therefore, citral constitutes a promising, innovative, and safe molecule for the management of immunoinflammatory conditions and pain states.


Subject(s)
Acyclic Monoterpenes/pharmacology , Adenosine Triphosphate/chemistry , Amidohydrolases/chemistry , Analgesics/pharmacology , Inflammation/metabolism , Lectins, C-Type/chemistry , Monoterpenes/pharmacology , Receptor, Cannabinoid, CB2/chemistry , Toll-Like Receptor 4/chemistry , Amidohydrolases/metabolism , Animals , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Inflammation/drug therapy , Lectins, C-Type/metabolism , Mice , Molecular Structure , Monoterpenes/chemistry , Receptor, Cannabinoid, CB2/therapeutic use , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Toll-Like Receptor 2
19.
Molecules ; 25(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023919

ABSTRACT

The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.


Subject(s)
Pharmaceutical Preparations/chemistry , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism , Computer-Aided Design , Data Mining , Drug Design , Humans , Models, Molecular , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
20.
J Biol Chem ; 293(51): 19874-19885, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30385503

ABSTRACT

Vaccination is devised/formulated to stimulate specific and prolonged immune responses for long-term protection against infection or disease. A vaccine component, namely adjuvant, enhances antigen recognition by the host immune system and thereby stimulates its cellular and adaptive responses. Especially synthetic Toll-like receptor (TLR) agonists having self-assembling properties are considered as good candidates for adjuvant development. Here, a human TLR4-derived 20-residue peptide (TR-433), present in the dimerization interface of the TLR4-myeloid differentiation protein-2 (MD2) complex, displayed self-assembly and adopted a nanostructure. Both in vitro studies and in vivo experiments in mice indicated that TR-433 is nontoxic. TR-433 induced pro-inflammatory responses in THP-1 monocytes and HEK293T cells that were transiently transfected with TLR4/CD14/MD2 and also in BALB/c mice. In light of the self-assembly and pro-inflammatory properties of TR-433, we immunized with a mixture of TR-433 and either ovalbumin or filarial antigen trehalose-6-phosphate phosphatase (TPP). A significant amount of IgG titers was produced, suggesting adjuvanting capability of TR-433 that was comparable with that of Freund's complete adjuvant (FCA) and appreciably higher than that of alum. We found that TR-433 preferentially activates type 1 helper T cell (Th1) response rather than type 2 helper T cell (Th2) response. To our knowledge, this is the first report on the identification of a short TLR4-derived peptide that possesses both self-assembling and pro-inflammatory properties and has significant efficacy as an adjuvant, capable of activating cellular responses in mice. These results indicate that TR-433 possesses significant potential for development as a new adjuvant in therapeutic application.


Subject(s)
Adjuvants, Immunologic/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Multimerization , Toll-Like Receptor 4/chemistry , Vaccines/chemistry , Vaccines/immunology , Amino Acid Sequence , Animals , Brugia malayi/immunology , Cell Line , Humans , Immunization , Lymphocyte Antigen 96/chemistry , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Ovalbumin/immunology , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL