RESUMEN
Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in Ceské Budejovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.
Asunto(s)
Lino , Glucósidos , Lignanos , Antioxidantes/análisis , Butileno Glicoles/análisis , Butileno Glicoles/química , Butileno Glicoles/metabolismo , Lino/química , Lignanos/análisis , Lignanos/química , Lignanos/metabolismoRESUMEN
The research is focused on the quantitative evaluation of the flaxseed (Linum usitatissimum L.) proteome at the level of seed cake (SC), fine flour-sieved a fraction below 250 µm (FF)-and protein concentrate (PC). The evaluation was performed on three oilseed flax cultivars (Agriol, Raciol, and Libra) with different levels of α-linolenic acid content using LC-MS/MS (shotgun proteomics) analysis, which was finalized by database searching using the NCBI protein database for Linum usitatissimum and related species. A total of 2560 protein groups (PGs) were identified, and their relative abundance was calculated. A set of 33 quantitatively most significant PGs was selected for further characterization. The selected PGs were divided into four classes-seed storage proteins (11S globulins and conlinins), oleosins, defense- and stress-related proteins, and other major proteins (mainly including enzymes). Seed storage proteins were found to be the most abundant proteins. Specifically, 11S globulins accounted for 41-44% of SC proteins, 40-46% of FF proteins, and 72-84% of PC proteins, depending on the cultivar. Conlinins (2S albumins) were the most abundant in FF, ranging from 10 to 13% (depending on cultivar). The second most important class from the point of relative abundance was oleosins, which were represented in SC and FF in the range of 2.1-3.8%, but only 0.36-1.20% in PC. Surprisingly, a relatively high abundance of chitinase was found in flax products as a protein related to defence and stress reactions.
RESUMEN
As a source of nutritionally important components, hemp seeds are often dehulled for consumption and food applications by removing the hard hulls, which increases their nutritional value. The hulls thus become waste, although they may contain valuable protein items, about which there is a lack of information. The present work is therefore aimed at evaluating the proteome of hemp (Cannabis sativa L.) at the whole-seed, dehulled seed, and hull levels. The evaluation was performed on two cultivars, Santhica 27 and Uso-31, using LC-MS/MS analysis. In total, 2833 protein groups (PGs) were identified, and their relative abundances were determined. A set of 88 PGs whose abundance exceeded 1000 ppm (MP88 set) was considered for further evaluation. The PGs of the MP88 set were divided into ten protein classes. Seed storage proteins were found to be the most abundant protein class: the averages of the cultivars were 65.5%, 71.3%, and 57.5% for whole seeds, dehulled seeds, and hulls, respectively. In particular, 11S globulins representing edestin (three PGs) were found, followed by 7S vicilin-like proteins (four PGs) and 2S albumins (two PGs). The storage 11S globulins in Santhica 27 and Uso-31 were found to have a higher relative abundance in the dehulled seed proteome (summing to 58.6 and 63.2%) than in the hull proteome (50.5 and 54%), respectively. The second most abundant class of proteins was oleosins, which are part of oil-body membranes. PGs belonging to metabolic proteins (e.g., energy metabolism, nucleic acid metabolism, and protein synthesis) and proteins related to the defence and stress responses were more abundant in the hulls than in the dehulled seeds. The hulls can, therefore, be an essential source of proteins, especially for medical and biotechnological applications. Proteomic analysis has proven to be a valuable tool for studying differences in the relative abundance of proteins between dehulled hemp seeds and their hulls among different cultivars.
RESUMEN
Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.
RESUMEN
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 µm; medium: 315−710 µm; and fine: <315 µm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread.
RESUMEN
Black garlic (BG) is a product originating from fresh garlic (FG) and substantially differs in many aspects from FG due to the process called ageing. During this thermal process, the health-promoting properties of FG are enhanced, and the sensory traits are altered. However, very little is known about how the physicochemical properties of different FG varieties affect these properties of BG. Thus, the aim of this study was to investigate the influence of seven FG varieties subjected to the thermal process on the physicochemical parameters of BG. To prepare the BG samples, a fifteen-day ageing process involving a temperature gradient ranging from 30 to 82 °C was used. It was found that the antioxidant activity, the total polyphenol content, and the total soluble solids increased during ageing, while the pH level, moisture content, and lightness decreased in all the garlic varieties. The varieties of garlic differed in the studied traits significantly, both before (FG) and after ageing (BG). In the sensory analysis, significant differences between the BG varieties were observed only in the pleasantness of texture, while the remaining sensory descriptors (pleasantness of color, odor, taste and intensity of the garlic aroma, and overall acceptability) were not affected by variety. The correlations suggest that most of the FG's studied parameters in this study do not correlate with the properties of BG and cannot be used for the prediction of the quality of BG. Additionally, HPLC-MS/MS analysis revealed substantial changes in the composition of low molecular compounds.
RESUMEN
Mechanically separated fish meat (MSFM) can be used for the manufacturing of ready-to-eat products, such as sausages; however, it is highly perishable. Several plant by-products, including onion peel, which is rich in polyphenol antioxidants, can be added to food to extend shelf life. This study investigated the effects of the addition of onion peel powder (OPP) to sausage made from MSFM. Sausages were divided into four groups with different amounts of added OPP: 0% (control), 1%, 2%, and 3%. Cooked sausages were stored for 28 days at 5 °C. Samples were analyzed for thiobarbituric acid reactive substances, antioxidant activity, total polyphenol content, pH, and organoleptic properties. The addition of OPP significantly increased antioxidant activity and total polyphenol content and decreased pH, indicating acidic nature of OPP. Polyphenols from OPP effectively suppressed lipid oxidation. A 1-2% addition of OPP enhanced sensory properties. After the 28-day storage, the control samples received the lowest sensory score, due to the presence of a strong fishy odor, which was not present in samples with OPP. HPLC-MS/MS analysis revealed that quercetin is the most dominant compound in OPP. Overall, the results indicate that the addition of OPP in amounts of 1-2% can extend shelf life, without the deterioration of sensory properties.
RESUMEN
This study investigated the effects of the addition of onion waste fractions into gluten-free (GF) bread to promote its health benefits. 5% of the control (C) GF flour blend was replaced with three waste fractions in the form of: fried onion (FO), dried onion (DO) and onion peel (OP). Antioxidant activity, content of flavonols and total polyphenols of breads increased in the following order: C < FO < DO < OP. No differences were observed in sensory analysis. We found that quercetin glycosides, dimers and trimer in OP-bread, determined according to their mass spectra, decomposed during baking and released free quercetin, which points to their thermal instability. Cross-over study revealed that consumption of OP-bread significantly increased (p < 0.05) antioxidant activity of consumers' blood compared to control bread consumption, indicating good bioavailability of flavonols. Results suggest incorporation of OP into GF bread can increase its biological value with satisfactory sensory acceptance.