Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Sci Food Agric ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37086039

RESUMEN

BACKGROUND: The purpose of this study was to investigate the potential of hyperspectral imaging for the characterization of cooking quality parameters, dry matter content (DMC), water absorption (WAB), and texture in cassava genotypes contrasting for their cooking quality. RESULTS: Hyperspectral images were acquired on cooked and fresh intact longitudinal and transversal slices from 31 cassava genotypes harvested in March 2022 in Colombia. Different chemometric methods were tested for the quantification of DMC, WAB, and texture parameters. Data analysis was conducted through partial least squares regression, K nearest neighbors regression, support vector machine regression and CovSel multiple linear regression (CovSel_MLR). Efficient performances were obtained for DMC using CovSel_MLR with, coefficient of multiple determination R p 2 = 0.94 $$ {R}_p^2=0.94 $$ , root-mean-square error of prediction RMSEP = 0.96 g/100 g, and ratio of the standard deviation values RPD = 3.60. High heterogeneity was observed between contrasting genotypes. The predicted distribution of DMC within the root can be homogeneous or heterogeneous depending on the genotype. Weak predictions were obtained for WAB and texture parameters. CONCLUSIONS: This study showed that hyperspectral imaging could be used as a high-throughput phenotyping tool for the visualization of DMC in contrasting cooking quality genotypes. Further improvement of protocols and larger datasets are required for WAB and texture quality traits. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
J Sci Food Agric ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665950

RESUMEN

BACKGROUND: Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter content (DMC) and the starch fraction of amylose content (AC). Accordingly, in the present study, near-infrared reflectance spectroscopy (NIRS) models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care of root sample preparation and cassava germplasm diversity available in Uganda. RESULTS: Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration samples ranged from 20 to 45 g 100g-1 , whereas, for amylose content, it ranged from 14 to 33 g 100g-1 . In the validation set, average DMC was 29.5 g 100g-1 , whereas, for amylose content, it was 24.64 g 100g-1 . For DMC, a modified partial least square regression model had regression coefficients (R2 ) of 0.98 and 0.96, respectively, in the calibration and validation set. These were also associated with low bias (-0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition, standard error of prediction values ranged from 0.9 g 100g-1 to 1.06 g 100g-1 . For AC, the regression coefficient was 0.91 for the calibration set and 0.94 for the validation set. A bias equivalent to -0.03 and a ratio of performance deviation of 4.23 were observed. CONCLUSION: These findings confirm the robustness of NIRS in the estimation of dry matter content and amylose content in cassava roots and thus justify its use in routine cassava breeding operations. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
J Sci Food Agric ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400424

RESUMEN

BACKGROUND: Yam (Dioscorea alata L.) is the staple food of many populations in the intertropical zone, where it is grown. The lack of phenotyping methods for tuber quality has hindered the adoption of new genotypes from breeding programs. Recently, near-infrared spectroscopy (NIRS) has been used as a reliable tool to characterize the chemical composition of the yam tuber. However, it failed to predict the amylose content, although this trait is strongly involved in the quality of the product. RESULTS: This study used NIRS to predict the amylose content from 186 yam flour samples. Two calibration methods were developed and validated on an independent dataset: partial least squares (PLS) and convolutional neural networks (CNN). To evaluate final model performances, the coefficient of determination (R2 ), the root mean square error (RMSE), and the ratio of performance to deviation (RPD) were calculated using predictions on an independent validation dataset. The tested models showed contrasting performances (i.e., R2 of 0.72 and 0.89, RMSE of 1.33 and 0.81, RPD of 2.13 and 3.49 respectively, for the PLS and the CNN model). CONCLUSION: According to the quality standard for NIRS model prediction used in food science, the PLS method proved unsuccessful (RPD < 3 and R2 < 0.8) for predicting amylose content from yam flour but the CNN model proved to be reliable and efficient method. With the application of deep learning methods, this study established the proof of concept that amylose content, a key driver of yam textural quality and acceptance, can be predicted accurately using NIRS as a high throughput phenotyping method. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124406, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759574

RESUMEN

It has been established that near infrared (NIR) spectroscopy has the potential of estimating sensory traits given the direct spectral responses that these properties have in the NIR region. In sweetpotato, sensory and texture traits are key for improving acceptability of the crop for food security and nutrition. Studies have statistically modelled the levels of NIR spectroscopy sensory characteristics using partial least squares (PLS) regression methods. To improve prediction accuracy, there are many advanced techniques, which could enhance modelling of fresh (wet and un-processed) samples or nonlinear dependence relationships. Performance of different quantitative prediction models for sensory traits developed using different machine learning methods were compared. Overall, results show that linear methods; linear support vector machine (L-SVM), principal component regression (PCR) and PLS exhibited higher mean R2 values than other statistical methods. For all the 27 sensory traits, calibration models using L-SVM and PCR has slightly higher overall R2 (x¯ = 0.33) compared to PLS (x¯ = 0.32) and radial-based SVM (NL-SVM; x¯= 0.30). The levels of orange color intensity were the best predicted by all the calibration models (R2 = 0.87 - 0.89). The elastic net linear regression (ENR) and tree-based methods; extreme gradient boost (XGBoost) and random forest (RF) performed worse than would be expected but could possibly be improved with increased sample size. Lower average R2 values were observed for calibration models of ENR (x¯ = 0.26), XGBoost (x¯ = 0.26) and RF (x¯ = 0.22). The overall RMSE in calibration models was lower in PCR models (X = 0.82) compared to L-SVM (x¯ = 0.86) and PLS (x¯ = 0.90). ENR, XGBoost and RF also had higher RMSE (x¯ = 0.90 - 0.92). Effective wavelengths selection using the interval partial least-squares regression (iPLS), improved the performance of the models but did not perform as good as the PLS. SNV pre-treatment was useful in improving model performance.


Asunto(s)
Análisis de los Alimentos , Ipomoea batatas , Aprendizaje Automático , Espectroscopía Infrarroja Corta , Ipomoea batatas/química , Sensación , Calidad de los Alimentos , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Modelos Estadísticos , Algoritmos , Humanos , Fitomejoramiento/métodos
5.
Plants (Basel) ; 12(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687381

RESUMEN

Accurate dry matter determination (DM) in Hass avocados is vital for optimal harvesting and ensuring fruit quality. Predictive models based on NIRS need to capture fruit DM gradient. This work aimed to determine the DM content in Hass avocado whole by NIRS scanning different fruit zones. Spectra were recorded for each zone of the fruit: peduncle (P), equator (E), and base (B). The calibration and validation included fruit from different orchards in two harvest cycles. The results show a DM gradient within the fruit: 24.47% (E), 24.68% (B), and 24.79% (P). The DM gradient was observed within the spectra using the RMSi (root mean square) criterion and PCA. The results show that at least one spectrum per fruit zone was needed to represent the variability within the fruit. The performances of the calibration using the whole set of data were R2: 0.74 and standard error of cross-validation (SECV) = 1.18%. In the validation stage using independent validation sets, the models showed similar performance (R2: 0.75, SECV 1.15%) with low values of the standard error of prediction (SEP): 1.62%. These results demonstrate the potential of near-infrared spectroscopy for high-throughput sorting of avocados based on their commercial quality.

6.
Plant Physiol Biochem ; 171: 213-225, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863583

RESUMEN

Nacional is a variety of cocoa tree known for its "Arriba" aroma characterised mainly by fruity, floral, and spicy aromatic notes. In this study, the genetic basis of the fruity aroma of modern Nacional cocoa was investigated. GWAS studies have been conducted on biochemical and sensorial fruity traits and allowed to identify a large number of association zones. These areas are linked to both the volatile compounds known to provide fruity flavours and present in the beans before and after roasting, and to the fruity notes detected by sensorial analysis. Five main metabolic pathways were identified as involved in the fruity traits of the Nacional population: the protein degradation pathway, the sugar degradation pathway, the fatty acid degradation pathway, the monoterpene pathway, and the L-phenylalanine pathway. Candidate genes involved in the biosynthetic pathways of volatile compounds identified in association areas were detected for a large number of associations.


Asunto(s)
Cacao , Cacao/genética , Fermentación , Estudio de Asociación del Genoma Completo , Redes y Vías Metabólicas , Metabolómica , Odorantes , Semillas
7.
Plant Genome ; 15(4): e20218, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36065790

RESUMEN

Cocoa (Theobroma cacao L.) is the only tree that can produce cocoa. Cocoa beans are highly sought after by chocolate makers to produce chocolate. Cocoa can be fine aromatic, characterized by floral and fruity notes, or it can be described as standard cocoa with a more pronounced cocoa aroma and bitterness. In this study, the genetic and biochemical determinants of sensorial notes and nonvolatile compounds related to bitterness, astringency, fat content, and protein content will be investigated in two populations: a cultivated modern Nacional population and a population of cocoa accessions collected recently in the Ecuadorian South Amazonia area of origin of the Nacional ancestral variety. For this purpose, a genome-wide association study (GWAS) was carried out on both populations, with results of biochemical compounds evaluated by near-infrared spectroscopy (NIRS) assays and with sensory evaluations. Twenty areas of associations were detected for sensorial data especially bitterness and astringency. Fifty-three areas of associations were detected linked to nonvolatile compounds. A total of 81 candidate genes could be identified in the areas of the association.


Asunto(s)
Cacao , Chocolate , Cacao/genética , Cacao/química , Cacao/metabolismo , Astringentes/metabolismo , Estudio de Asociación del Genoma Completo , Ecuador , Fermentación
8.
Data Brief ; 34: 106647, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33365375

RESUMEN

Combined with multivariate calibration methods, near-infrared (NIR) spectroscopy is a non-destructive, rapid, precise and inexpensive analytical method to predict chemical contents of organic products. Nevertheless, one practical limitation of this approach is that performance of the calibration model may decrease when the data are acquired with different spectrometers. To overcome this limitation, standardization methods exist, such as the piecewise direct standardization (PDS) algorithm. The dataset presented in this article consists of 332 manure samples from poultry and cattle, sampled from farms located in major regions of livestock production in mainland France and Reunion Island. The samples were analysed for seven chemical properties following conventional laboratory methods. NIR spectra were acquired with three spectrometers from fresh homogenized and dried ground samples and then standardized using the PDS algorithm. This important dataset can be used to train and test chemometric models and is of particular interest to NIR spectroscopists and agronomists who assess the agronomic value of animal waste.

9.
Int J Food Sci Technol ; 56(3): 1491-1501, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33776247

RESUMEN

The review aimed to identify the different high-throughput phenotyping (HTP) techniques that used for quality evaluation in cassava and yam breeding programmes, and this has provided insights towards the development of metrics and their application in cassava and yam improvements. A systematic review of the published research articles involved the use of NIRS in analysing the quality traits of cassava and yam was carried out, and Scopus, Science Direct, Web of Sciences and Google Scholar were searched. The results of the review established that NIRS could be used in understanding the chemical constituents (carbohydrate, protein, vitamins, minerals, carotenoids, moisture, starch, etc.) for high-throughput phenotyping. This study provides preliminary evidence of the application of NIRS as an efficient and affordable procedure for HTP. However, the feasibility of using mid-infrared spectroscopy (MIRS) and hyperspectral imaging (HSI) in combination with the NIRS could be further studied for quality traits phenotyping.

10.
Front Plant Sci ; 12: 681979, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630447

RESUMEN

Theobroma cacao is the only source that allows the production of chocolate. It is of major economic importance for producing countries such as Ecuador, which is the third-largest cocoa producer in the world. Cocoa is classified into two groups: bulk cocoa and aromatic fine flavour cocoa. In contrast to bulk cocoa, fine flavour cocoa is characterised by fruity and floral notes. One of the characteristics of Nacional cocoa, the emblematic cocoa of Ecuador, is its aromatic ARRIBA flavour. This aroma is mainly composed of floral notes whose genetic and biochemical origin is not well-known. This research objective is to study the genetic and biochemical determinism of the floral aroma of modern Nacional cocoa variety from Ecuador. Genome-Wide Association Study (GWAS) was conducted on a population of 152 genotypes of cocoa trees belonging to the population variety of modern Nacional. Genome-Wide Association Study was conducted by combining SSR and SNP genotyping, assaying biochemical compounds (in roasted and unroasted beans), and sensory evaluations from various tastings. This analysis highlighted different areas of association for all types of traits. In a second step, a search for candidate genes in these association zones was undertaken, which made it possible to find genes potentially involved in the biosynthesis pathway of the biochemical compound identified in associations. Our results show that two biosynthesis pathways seem to be mainly related to the floral note of Nacional cocoa: the monoterpene biosynthesis pathway and the L-phenylalanine degradation pathway. As already suggested, the genetic background would therefore appear as largely explaining the floral note of cocoa.

11.
Food Chem ; 340: 127904, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32890856

RESUMEN

The present study aims at developing an analytical methodology which allows correlating sensory poles of chocolate to their chemical characteristics and, eventually, to those of the cocoa beans used for its preparation. Trained panelists investigated several samples of chocolate, and they divided them into four sensorial poles (characterized by 36 different descriptors) attributable to chocolate flavor. The same samples were analyzed by six different techniques: Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), Solid Phase Micro Extraction-Gas Chromatography-Mass Spectroscopy (SPME-GC-MS), High-Performance Liquid Chromatography (HPLC) (for the quantification of eight organic acids), Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS) for polyphenol quantification, 3D front face fluorescence Spectroscopy and Near Infrared Spectroscopy (NIRS). A multi-block classification approach (Sequential and Orthogonalized-Partial Least Squares - SO-PLS) has been used, in order to exploit the chemical information to predict the sensorial poles of samples. Among thirty-one test samples, only two were misclassified.


Asunto(s)
Cacao/química , Chocolate/análisis , Chocolate/clasificación , Análisis de los Alimentos/métodos , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos/estadística & datos numéricos , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Análisis de los Mínimos Cuadrados , Espectrometría de Masas/métodos , Polifenoles/análisis , Microextracción en Fase Sólida , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta , Gusto
12.
Tree Physiol ; 41(12): 2308-2325, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046676

RESUMEN

In coffee, fruit production on a given shoot drops after some years of high yield, triggering pruning to induce resprouting. The timing of pruning is a crucial farmer's decision affecting yield and labour. One reason for fruit production drop could be the exhaustion of resources, particularly the non-structural carbohydrates (NSC). To test this hypothesis in a Coffea L. arabica agroforestry system, we measured the concentrations of NSC, carbon (C) and nitrogen (N) in leaves, stems and stumps of the coffee plants, 2 and 5 years after pruning. We also compared shaded vs full sun plants. For that purpose, both analytical reference and visible and near infrared reflectance spectroscopy (VNIRS) methods were used. As expected, concentrations of biochemical variables linked to photosynthesis activity (N, glucose, fructose, sucrose) decreased from leaves to stems, and then to stumps. In contrast, variables linked more closely to plant structure and reserves (total C, C:N ratio, starch concentration) were higher in long lifespan organs like stumps. Shading had little effect on most measured parameters, contrary to expectations. Concentrations of N, glucose and fructose were higher in 2-year-old organs. Conversely, starch concentration in perennial stumps was three times higher 5 years after pruning than 2 years after pruning, despite high fruit production. Therefore, the drop in fruit production occurring after 5-6 years was not due to a lack of NSC on plant scale. Starch accumulation in perennial organs concurrently to other sinks, such as fruit growth, could be considered as a 'survival' strategy, which may be a relic of the behaviour of wild coffee (a tropical shade-tolerant plant). This study confirmed that VNIRS is a promisingly rapid and cost-effective option for starch monitoring (coefficient of determination for validation, R2val = 0.91), whereas predictions were less accurate for soluble sugars, probably due to their too similar spectral signature.


Asunto(s)
Coffea , Café , Frutas , Hojas de la Planta , Almidón
13.
Plant Physiol Biochem ; 46(5-6): 569-79, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18420417

RESUMEN

Coffee fruits grown in shade are characterized by larger bean size than those grown under full-sun conditions. The present study assessed the effects of shade on bean characteristics and sugar metabolism by analyzing tissue development, sugar contents, activities of sucrose metabolizing enzymes and expression of sucrose synthase-encoding genes in fruits of coffee (Coffea arabica L.) plants submitted to full-sun (FS) and shade (SH) conditions. Evolution of tissue fresh weights measured in fruits collected regularly from flowering to maturation indicated that this increase is due to greater development of the perisperm tissue in the shade. The effects of light regime on sucrose and reducing sugar (glucose and fructose) contents were studied in fresh and dry coffee beans. Shade led to a significant reduction in sucrose content and to an increase in reducing sugars. In pericarp and perisperm tissues, higher activities of sucrose synthase (EC 2.4.1.13) and sucrose-phosphate synthase (SPS: EC 2.4.1.14) were detected at maturation in the shade compared with full sun. These two enzymes also had higher peaks of activities in developing endosperm under shade than in full sun. It was also noted that shade modified the expression of SUS-encoding genes in coffee beans; CaSUS2 gene transcripts levels were higher in SH than in FS. As no sucrose increase accompanied these changes, this suggests that sucrose metabolism was redirected to other metabolic pathways that need to be identified.


Asunto(s)
Coffea/crecimiento & desarrollo , Coffea/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Northern Blotting , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Coffea/genética , Frutas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Luz
14.
PLoS One ; 13(12): e0209702, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30592746

RESUMEN

The most commonly used method for measuring carotenoid concentration is high-performance liquid chromatography (HPLC). Nevertheless, easier, quicker, and less costly proxy methods exist. We aimed to determine the diagnostic performance of several proxy methods: the spectrophotometer, iCheck Carotene, and near-infrared spectroscopy using both a desktop (dNIRS) and a portable (pNIRS) device for the measurement of total carotenoid concentration (TCC) and all-trans-ß-carotene concentration (trans-BC) in 30 fresh cassava (Manihot esculenta Crantz) storage roots in comparison with HPLC. The spectrophotometer presented the highest predictability for TCC, followed by iCheck, dNIRS, and pNIRS. The dNIRS showed the highest predictability and agreement for trans-BC. The pNIRS showed the poorest repeatability and greatest underestimations compared with HPLC. The agreement between all methods was lower for higher carotenoid concentration, with the exception of the spectrophotometer. According to our results, and for screening purposes, the measurement of carotenoids in fresh cassava roots can be carried out by spectrophotometer, iCheck Carotene and NIRS methods depending on the availability of equipment.


Asunto(s)
Carotenoides/análisis , Manihot/química , Cromatografía Líquida de Alta Presión , Alimentos Fortificados/análisis , Manihot/clasificación , Espectrofotometría
15.
Food Res Int ; 107: 675-682, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29580534

RESUMEN

Cocoa fermentation is a crucial step for the development of cocoa aroma and precursors of high quality cocoa and by-products. This bioprocess has been studied for years to understand cocoa chemical changes but some matters concerning changes in fat content remain that are investigated in this work. Changes in the quantity (free and total fat), extractability and composition of cocoa butter were assessed in samples from Madagascar, the Dominican Republic and Ecuador. Increases in free fat content were highlighted in samples from each origin thanks to the use of the 'soxtec' solvent method, which preserves the integrity of the butter. A 4.71% increase in free fat was measured in the Ecuadorian samples fermented for 144 h. Conversely, total fat content remained stable throughout fermentation. Protein and polyphenol contents decreases were linked to fat content augmentation by a strong negative interaction. Triglyceride and total and linked fatty acid kinetics (0 to 6 days) of the butter remained statistically stable during fermentation, as did unsaponifiable matter. The origin of fermentation had a predominant and significant impact on composition, revealed by PCA. This work underlines and explains the importance of fermentation process in improving yield of fat that can be extracted while preserving the composition of this cocoa butter. This study highlights an interaction in cocoa unfermented or partially fermented beans. This phenomenon causes butter content retention but is slowly broken after 72 h fermentation. Therefore, fermentation appears to be also necessary to enhance the cocoa butter content extracted from the nibs.


Asunto(s)
Cacao/microbiología , Grasas de la Dieta/análisis , Fermentación , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Semillas/microbiología , Cacao/crecimiento & desarrollo , República Dominicana , Ecuador , Ácidos Grasos/análisis , Madagascar , Proteínas de Vegetales Comestibles/análisis , Polifenoles/análisis , Semillas/crecimiento & desarrollo , Factores de Tiempo , Triglicéridos/análisis
16.
J Agric Food Chem ; 55(4): 1077-83, 2007 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-17256955

RESUMEN

This study describes a new and suitable method for the rapid evaluation of rice (Oryza sativa, L.) aroma by analysis of the volatile fraction using solid-phase microextraction coupled with mass spectrometry (SPME/MS). The abundance list of unresolved mass fragments of the SPME extracted volatile fraction formed the "fingerprint" of a rice sample. Fingerprints of 61 rice samples were recorded in duplicate. Pollutants originating from the extraction system induce fingerprint background that could be lowered by careful cleaning of vials and caps and by exclusion of specific mass fragments. A good discrimination between scented and nonscented rice samples was obtained using the SIMCA procedure. Most of the discriminating mass fragments could be directly or indirectly assigned to potential aromatic molecules present in rice.


Asunto(s)
Odorantes/análisis , Oryza/química , Oryza/clasificación , Análisis Discriminante , Espectrometría de Masas , Pirroles/análisis , Semillas/química , Volatilización
17.
PLoS One ; 12(12): e0188918, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29228026

RESUMEN

Portable Vis/NIRS are flexible tools for fast and unbiased analyses of constituents with minimal sample preparation. This study developed calibration models for dry matter content (DMC) and carotenoids in fresh cassava roots using a portable Vis/NIRS system. We examined the effects of eight data pre-treatment combinations on calibration models and assessed calibrations on processed and intact root samples. We compared Vis/NIRS derived-DMC to other phenotyping methods. The results of the study showed that the combination of standard normal variate and de-trend (SNVD) with first derivative calculated on two data points and no smoothing (SNVD+1111) was adequate for a robust model. Calibration performance was higher with processed than the intact root samples for all the traits although intact root models for some traits especially total carotenoid content (TCC) (R2c = 96%, R2cv = 90%, RPD = 3.6 and SECV = 0.63) were sufficient for screening purposes. Using three key quality traits as templates, we developed models with processed fresh root samples. Robust calibrations were established for DMC (R2c = 99%, R2cv = 95%, RPD = 4.5 and SECV = 0.9), TCC (R2c = 99%, R2cv = 91%, RPD = 3.5 and SECV = 2.1) and all Trans ß-carotene (ATBC) (R2c = 98%, R2cv = 91%, RPD = 3.5 and SECV = 1.6). Coefficient of determination on independent validation set (R2p) for these traits were also satisfactory for ATBC (91%), TCC (88%) and DMC (80%). Compared to other methods, Vis/NIRS-derived DMC from both intact and processed roots had very high correlation (>0.95) with the ideal oven-drying than from specific gravity method (0.49). There was equally a high correlation (0.94) between the intact and processed Vis/NIRS DMC. Therefore, the portable Vis/NIRS could be employed for the rapid analyses of DMC and quantification of carotenoids in cassava for nutritional and breeding purposes.


Asunto(s)
Carotenoides/análisis , Manihot/química , Raíces de Plantas/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Modelos Químicos
18.
Tree Physiol ; 26(9): 1239-48, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16740499

RESUMEN

For buyers of Arabica coffee (Coffea arabica L.) in Central America, elevation and variety are important indicators of quality. We compared coffee produced by three types of varieties established in various trials at elevations ranging from 700-1600 m in three countries (El Salvador, Costa Rica and Honduras). Arabica hybrids resulting from crosses of Sudanese-Ethiopian origins with either traditional varieties or with introgressed lines derived from the hybrid of Timor (C. arabica x Coffea canephora Pierre ex Froehn) were compared with traditional cultivars (TC). Effects of elevation and variety on bean biochemical composition (caffeine, chlorogenic acid, trigonelline, fat and sucrose) were evaluated by predictive models based on calibration of near-infrared (NIR) spectra and by chemometric analysis of the global NIR spectrum. Beverage quality tests were performed by a panel of ten professional cup-tasters. Experiment 1 was carried out on the slopes of the Poas volcano (Costa Rica) with the traditional cultivar 'Caturra'. Experiment 2 compared the three varieties in a network of trials established in three countries of Central America. Significant linear regressions with elevation were observed in Experiment 1 with Caturra and in Experiment 2 for the traditional cultivars, and trends were established relating variation in biochemical compounds and cup quality to elevation. Convergence or divergence of the new hybrids in relation to these trends was observed. For the traditional cultivars, elevation had a significant effect on bean biochemical composition, with chlorogenic acid and fat concentrations increasing with increasing elevation. For the Arabica hybrids, elevation explained little of the variation in chlorogenic acid concentration and none of the variation in fat concentration. Nevertheless, Arabica hybrids had 10-20% higher fat concentrations than the traditional varieties at low elevations and similar fat concentrations at high elevations. The samples could be discriminated according to elevation based on NIR spectra; however, the spectra of the TC varieties were more strongly modified by elevation than the spectra of the hybrids. Nonetheless, this analysis confirmed homeostasis of the hybrids for which bean biochemical composition was less affected by elevation than that of the traditional varieties. The organoleptic evaluation, performed on samples originating from high elevations, showed no significant differences between Arabica hybrids and traditional cultivars. The new hybrid varieties with high beverage quality and productivity potential should act as a catalyst in increasing the economic viability of coffee agroforestry systems being developed in Central America.


Asunto(s)
Altitud , Coffea/química , Coffea/clasificación , Café/química , Café/normas , Hibridación Genética , América Central , Coffea/metabolismo , Etiopía , Ligamiento Genético , Espectroscopía Infrarroja Corta , Sudán
19.
J Agric Food Chem ; 62(41): 10136-42, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25259956

RESUMEN

Flavan-3-ols were successfully extracted from cocoa by the Fast-Prep device and analyzed by HPLC-DAD, and their identifications were confirmed by injection of authentic standards. (-)-Epicatechin was the most abundant component with an average of 9.4 mg/g dried cocoa powder. More than 700 cocoa samples were used to calibrate the NIRS. An efficient calibration model was developed to accurately determine any flavan-3-ol compound of ground dried cocoa beans (SEP = 2.33 mg/g in the case of total flavan-3-ols). This performance enabled NIRS to be used as an efficient and easy-to-use tool for estimating the level of targeted compounds. The analysis of the PLS loadings of the model and pure epicatechin spectra gave proof that NIRS was calibrated on an indirect strong correlation resulting in the changes in flavan-3-ols during fermentation and their interaction with some major components, such as proteins. Total flavan-3-ol concentration fell from an average of 33.3 mg/g for unfermented samples to an average of 6.2 mg/g at the end of fermentation. Changes in flavan-3-ol content were dependent upon the origin and highly correlated to the fermentation level expressed as the sum of temperatures (average R(2) = 0.74), a good marker of the fermentation process and of the heterogeneity of the batch.


Asunto(s)
Cacao/química , Flavonoides/química , Extractos Vegetales/química , Espectroscopía Infrarroja Corta/métodos , Fermentación , Manipulación de Alimentos , Polifenoles/química , Semillas/química , Temperatura
20.
PLoS One ; 8(1): e54079, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349790

RESUMEN

The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and gentle air-drying of the fermented beans and their permanent dry storage were an efficient and comparatively easy precondition for high cocoa quality.


Asunto(s)
Cacao/genética , Variación Genética , Árboles/genética , Biflavonoides/análisis , Biodiversidad , Biomasa , Cacao/química , Cacao/crecimiento & desarrollo , Cafeína/análisis , Catequina/análisis , Fermentación , Manipulación de Alimentos/métodos , Frutas/química , Frutas/genética , Frutas/crecimiento & desarrollo , Genotipo , Nicaragua , Proantocianidinas/análisis , Control de Calidad , Semillas/química , Semillas/genética , Semillas/metabolismo , Espectroscopía Infrarroja Corta , Gusto , Teobromina/análisis , Árboles/química , Árboles/crecimiento & desarrollo , Xantinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA