Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964598

RESUMEN

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Investigación Biomédica , Programas Informáticos , Flujo de Trabajo
2.
Remote Sens Environ ; 280: 113198, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36090616

RESUMEN

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.

3.
Front Plant Sci ; 14: 1235175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731976

RESUMEN

Mission-oriented governance of research focuses on inspirational, yet attainable goals and targets the sustainable development goals through innovation pathways. We disentangle its implications for plant breeding research and thus impacting the sustainability transformation of agricultural systems, as it requires improved crop varieties and management practices. Speedy success in plant breeding is vital to lower the use of chemical fertilizers and pesticides, increase crop resilience to climate stresses and reduce postharvest losses. A key question is how this success may come about? So far plant breeding research has ignored wider social systems feedbacks, but governance also failed to deliver a set of systemic breeding goals providing directionality and organization to research policy of the same. To address these challenges, we propose a heuristic illustrating the core elements needed for governing plant breeding research: Genetics, Environment, Management and Social system (GxExMxS) are the core elements for defining directions for future breeding. We illustrate this based on historic cases in context of current developments in plant phenotyping technologies and derive implications for governing research infrastructures and breeding programs. As part of mission-oriented governance we deem long-term investments into human resources and experimental set-ups for agricultural systems necessary to ensure a symbiotic relationship for private and public breeding actors and recommend fostering collaboration between social and natural sciences for working towards transdisciplinary collaboration.

4.
Plants (Basel) ; 11(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336631

RESUMEN

Next-generation sequencing and metabolomics have become very cost and work efficient and are integrated into an ever-growing number of life science research projects. Typically, established software pipelines analyze raw data and produce quantitative data informing about gene expression or concentrations of metabolites. These results need to be visualized and further analyzed in order to support scientific hypothesis building and identification of underlying biological patterns. Some of these tools already exist, but require installation or manual programming. We developed "Gene Expression Plotter" (GXP), an RNAseq and Metabolomics data visualization and analysis tool entirely running in the user's web browser, thus not needing any custom installation, manual programming or uploading of confidential data to third party servers. Consequently, upon receiving the bioinformatic raw data analysis of RNAseq or other omics results, GXP immediately enables the user to interact with the data according to biological questions by performing knowledge-driven, in-depth data analyses and candidate identification via visualization and data exploration. Thereby, GXP can support and accelerate complex interdisciplinary omics projects and downstream analyses. GXP offers an easy way to publish data, plots, and analysis results either as a simple exported file or as a custom website. GXP is freely available on GitHub (see introduction).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA