Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Invest New Drugs ; 39(2): 477-487, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33052556

RESUMEN

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are recommended first-line treatments in EGFR-mutated (EGFRm) non-small-cell lung cancer (NSCLC). However, acquired resistance (e.g. MET amplification) is frequently observed. Savolitinib (volitinib, HMPL-504, AZD6094) is an oral, potent, and highly selective MET-TKI. In this phase Ib, open-label, multicenter study, we enrolled Chinese patients with EGFRm advanced NSCLC, whose disease progressed following prior EGFR-TKI treatment. In the safety run-in, patients received savolitinib 600 or 800 mg plus gefitinib 250 mg orally once daily, and dose-limiting toxicities were recorded. In the expansion phase, patients with MET amplification received savolitinib plus gefitinib. The primary endpoint was safety/tolerability. Secondary endpoints included antitumor activity. Thirteen patients were enrolled in the safety phase (median age 52 years, 46% female) and 51 enrolled in the expansion phase (median age 61 years, 67% female). No dose-limiting toxicities were reported in either dose group during the safety run-in. Adverse events of grade ≥ 3 in the safety run-in and expansion phases (n = 57) were reported in 21 (37%) patients. The most frequently reported adverse events (all grades) were: vomiting (n = 26, 46%), nausea (n = 23, 40%), increased aspartate aminotransferase (n = 22, 39%). Of four deaths, none were treatment-related. The objective response rates in EGFR T790M-negative, -positive, and -unknown patients were 52% (12/23), 9% (2/23), and 40% (2/5), respectively. Savolitinib 600 mg plus gefitinib 250 mg once daily had an acceptable safety profile and demonstrated promising antitumor activity in EGFRm, MET-amplified advanced NSCLC patients who had disease progression on EGFR-TKIs. NCT02374645, Date of registration: March 2nd 2015.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazinas/uso terapéutico , Triazinas/uso terapéutico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Femenino , Gefitinib/administración & dosificación , Gefitinib/efectos adversos , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-met/biosíntesis , Pirazinas/administración & dosificación , Pirazinas/efectos adversos , Triazinas/administración & dosificación , Triazinas/efectos adversos
2.
Breast Cancer Res ; 21(1): 22, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736836

RESUMEN

BACKGROUND: Breast cancer is the most common invasive cancer among women worldwide. Next-generation sequencing (NGS) has revolutionized the study of cancer across research labs around the globe; however, genomic testing in clinical settings remains limited. Advances in sequencing reliability, pipeline analysis, accumulation of relevant data, and the reduction of costs are rapidly increasing the feasibility of NGS-based clinical decision making. METHODS: We report the development of MammaSeq, a breast cancer-specific NGS panel, targeting 79 genes and 1369 mutations, optimized for use in primary and metastatic breast cancer. To validate the panel, 46 solid tumors and 14 plasma circulating tumor DNA (ctDNA) samples were sequenced to a mean depth of 2311× and 1820×, respectively. Variants were called using Ion Torrent Suite 4.0 and annotated with cravat CHASM. CNVKit was used to call copy number variants in the solid tumor cohort. The oncoKB Precision Oncology Database was used to identify clinically actionable variants. Droplet digital PCR was used to validate select ctDNA mutations. RESULTS: In cohorts of 46 solid tumors and 14 ctDNA samples from patients with advanced breast cancer, we identified 592 and 43 protein-coding mutations. Mutations per sample in the solid tumor cohort ranged from 1 to 128 (median 3), and the ctDNA cohort ranged from 0 to 26 (median 2.5). Copy number analysis in the solid tumor cohort identified 46 amplifications and 35 deletions. We identified 26 clinically actionable variants (levels 1-3) annotated by OncoKB, distributed across 20 out of 46 cases (40%), in the solid tumor cohort. Allele frequencies of ESR1 and FOXA1 mutations correlated with CA.27.29 levels in patient-matched blood draws. CONCLUSIONS: In solid tumor biopsies and ctDNA, MammaSeq detects clinically actionable mutations (OncoKB levels 1-3) in 22/46 (48%) solid tumors and in 4/14 (29%) of ctDNA samples. MammaSeq is a targeted panel suitable for clinically actionable mutation detection in breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , ADN Tumoral Circulante/genética , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/genética , Adulto , Anciano , Antígenos de Carbohidratos Asociados a Tumores/sangre , Biomarcadores de Tumor/sangre , Biopsia , Mama/patología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN , Receptor alfa de Estrógeno/genética , Femenino , Factor Nuclear 3-alfa del Hepatocito/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Persona de Mediana Edad , Medicina de Precisión/métodos , Reproducibilidad de los Resultados
3.
Breast Cancer Res ; 17: 104, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26251034

RESUMEN

INTRODUCTION: Breast cancer in premenopausal women (preM) is frequently associated with worse prognosis compared to that in postmenopausal women (postM), and there is evidence that preM estrogen receptor-positive (ER+) tumors may respond poorly to endocrine therapy. There is, however, a paucity of studies characterizing molecular alterations in premenopausal tumors, a potential avenue for personalizing therapy for this group of women. METHODS: Using TCGA and METABRIC databases, we analyzed gene expression, copy number, methylation, somatic mutation, and reverse-phase protein array data in breast cancers from >2,500 preM and postM women. RESULTS: PreM tumors showed unique gene expression compared to postM tumors, however, this difference was limited to ER+ tumors. ER+ preM tumors showed unique DNA methylation, copy number and somatic mutations. Integrative pathway analysis revealed that preM tumors had elevated integrin/laminin and EGFR signaling, with enrichment for upstream TGFß-regulation. Finally, preM tumors showed three different gene expression clusters with significantly different outcomes. CONCLUSION: Together these data suggest that ER+ preM tumors have distinct molecular characteristics compared to ER+ postM tumors, particularly with respect to integrin/laminin and EGFR signaling, which may represent therapeutic targets in this subgroup of breast cancers.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Premenopausia , Neoplasias de la Mama/epidemiología , Análisis por Conglomerados , Biología Computacional , Variaciones en el Número de Copia de ADN , Metilación de ADN , Bases de Datos Genéticas , Femenino , Regulación de la Expresión Génica , Humanos , Mutación , Evaluación de Resultado en la Atención de Salud , Posmenopausia , Pronóstico , Proteómica , Reproducibilidad de los Resultados , Transducción de Señal
4.
Clin Pharmacol Ther ; 115(2): 349-360, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38010260

RESUMEN

This exploratory, post hoc analysis aimed to model circulating tumor DNA (ctDNA) dynamics and predict disease progression in patients with treatment-naïve locally advanced/metastatic epidermal growth factor receptor mutation (EGFRm)-positive non-small cell lung cancer, from the FLAURA trial (NCT02296125). Patients were randomized 1:1 and received osimertinib 80 mg once daily (q.d.) or comparator EGFR-TKIs (gefitinib 250 mg q.d. or erlotinib 150 mg q.d.). Plasma was collected at baseline and multiple timepoints until treatment discontinuation. Patients with Response Evaluation Criteria in Solid Tumors (RECIST) imaging data and detectable EGFR mutations (Ex19del/L858R) at baseline and ≥ 3 additional timepoints were evaluable. Joint modeling was conducted to characterize the relationship between longitudinal changes in ctDNA and probability of progression-free survival (PFS). A Bayesian joint model of ctDNA and PFS was developed solving differential equations with the ctDNA dynamics and the PFS time-to-event probability. Of 556 patients, 353 had detectable ctDNA at baseline. Evaluable patients (with available imaging and ≥ 3 additional timepoints, n = 320; ctDNA set) were divided into training (n = 259) and validation (n = 61) sets. In the validation set, the model predicted a median PFS of 17.7 months (95% confidence interval (CI): 11.9-28.3) for osimertinib (n = 23) and 9.1 months (95% CI: 6.3-14.8) for comparator (n = 38), consistent with observed RECIST PFS (16.4 months and 9.7, respectively). The model demonstrates that EGFRm ctDNA dynamics can predict the risk of disease progression in this patient population and could be used to predict RECIST-defined disease progression.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Antineoplásicos/uso terapéutico , Teorema de Bayes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/uso terapéutico , Progresión de la Enfermedad , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas
5.
Clin Cancer Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630555

RESUMEN

PURPOSE: Osimertinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) indicated for the treatment of EGFR mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line treated patients with EGFRm advanced NSCLC. Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN: ctDNA profiling analysis on-progression plasma samples from patients treated with osimertinib in both first (Phase 3, FLAURA trial) and second-line trials (Phase 3, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR engineered NSCLC cell lines and PXD models support a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS: These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be re-sensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alteration, and in these double mutant models capivasertib and osimertinib combination elicits an improved anti-tumor effect versus osimertinib alone. CONCLUSIONS: Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC that have a sub-optimal response, or develop resistance, to osimertinib through PIK3CA/AKT/PTEN alterations.

6.
PLoS Comput Biol ; 8(12): e1002830, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284279

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies.


Asunto(s)
Densidad Ósea/genética , MicroARNs/genética , Modelos Teóricos , Polimorfismo de Nucleótido Simple , Algoritmos , Animales , Drosophila/genética , Humanos
7.
Nat Commun ; 14(1): 1070, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849494

RESUMEN

Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. In the Phase III FLAURA study (NCT02296125), first-line osimertinib improved outcomes vs comparator EGFR-TKIs in EGFRm advanced non-small cell lung cancer. This analysis identifies acquired resistance mechanisms to first-line osimertinib. Next-generation sequencing assesses circulating-tumor DNA from paired plasma samples (baseline and disease progression/treatment discontinuation) in patients with baseline EGFRm. No EGFR T790M-mediated acquired resistance are observed; most frequent resistance mechanisms are MET amplification (n = 17; 16%) and EGFR C797S mutations (n = 7; 6%). Future research investigating non-genetic acquired resistance mechanisms is warranted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
Nat Commun ; 14(1): 1071, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849516

RESUMEN

Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. This analysis evaluates acquired resistance mechanisms to second-line osimertinib (n = 78) in patients with EGFR T790M advanced non-small cell lung cancer (NSCLC) from AURA3 (NCT02151981), a randomized phase 3 study comparing osimertinib with chemotherapy. Plasma samples collected at baseline and disease progression/treatment discontinuation are analyzed using next-generation sequencing. Half (50%) of patients have undetectable plasma EGFR T790M at disease progression and/or treatment discontinuation. Fifteen patients (19%) have >1 resistance-related genomic alteration; MET amplification (14/78, 18%) and EGFR C797X mutation (14/78, 18%).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Progresión de la Enfermedad
9.
J Clin Oncol ; 41(14): 2493-2502, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36809050

RESUMEN

PURPOSE: Metastatic papillary renal cancer (PRC) has poor outcomes, and new treatments are required. There is a strong rationale for investigating mesenchymal epithelial transition receptor (MET) and programmed cell death ligand-1 (PD-L1) inhibition in this disease. In this study, the combination of savolitinib (MET inhibitor) and durvalumab (PD-L1 inhibitor) is investigated. METHODS: This single-arm phase II trial explored durvalumab (1,500 mg once every four weeks) and savolitinib (600 mg once daily; ClinicalTrials.gov identifier: NCT02819596). Treatment-naïve or previously treated patients with metastatic PRC were included. A confirmed response rate (cRR) of > 50% was the primary end point. Progression-free survival, tolerability, and overall survival were secondary end points. Biomarkers were explored from archived tissue (MET-driven status). RESULTS: Forty-one patients treated with advanced PRC were enrolled into this study and received at least one dose of study treatment. The majority of patients had Heng intermediate risk score (n = 26 [63%]). The cRR was 29% (n = 12; 95% CI, 16 to 46), and the trial therefore missed the primary end point. The cRR increased to 53% (95% CI, 28 to 77) in MET-driven patients (n/N = 9/27) and was 33% (95% CI, 17 to 54) in PD-L1-positive tumors (n/N = 9/27). The median progression-free survival was 4.9 months (95% CI, 2.5 to 10.0) in the treated population and 12.0 months (95% CI, 2.9 to 19.4) in MET-driven patients. The median overall survival was 14.1 months (95% CI, 7.3 to 30.7) in the treated population and 27.4 months (95% CI, 9.3 to not reached [NR]) in MET-driven patients. Grade 3 and above treatment related adverse events occurred in 17 (41%) patients. There was 1 grade 5 treatment-related adverse event (cerebral infarction). CONCLUSION: The combination of savolitinib and durvalumab was tolerable and associated with high cRRs in the exploratory MET-driven subset.


Asunto(s)
Antígeno B7-H1 , Neoplasias Renales , Humanos , Neoplasias Renales/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
10.
Clin Cancer Res ; 29(17): 3340-3351, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379430

RESUMEN

PURPOSE: Plasma circulating tumor DNA (ctDNA) analysis is used for genotyping advanced non-small cell lung cancer (NSCLC); monitoring dynamic ctDNA changes may be used to predict outcomes. PATIENTS AND METHODS: This was a retrospective, exploratory analysis of two phase III trials [AURA3 (NCT02151981), FLAURA (NCT02296125)]. All patients had EGFR mutation-positive (EGFRm; ex19del or L858R) advanced NSCLC; AURA3 also included T790M-positive NSCLC. Osimertinib (FLAURA, AURA3), or comparator EGFR-tyrosine kinase inhibitor (EGFR-TKI; gefitinib/erlotinib; FLAURA), or platinum-based doublet chemotherapy (AURA3) was given. Plasma EGFRm was analyzed at baseline and Weeks 3/6 by droplet digital PCR. Outcomes were assessed by detectable/non-detectable baseline plasma EGFRm and plasma EGFRm clearance (non-detection) at Weeks 3/6. RESULTS: In AURA3 (n = 291), non-detectable versus detectable baseline plasma EGFRm had longer median progression-free survival [mPFS; HR, 0.48; 95% confidence interval (CI), 0.33-0.68; P < 0.0001]. In patients with Week 3 clearance versus non-clearance (n = 184), respectively, mPFS (months; 95% CI) was 10.9 (8.3-12.6) versus 5.7 (4.1-9.7) with osimertinib and 6.2 (4.0-9.7) versus 4.2 (4.0-5.1) with platinum-pemetrexed. In FLAURA (n = 499), mPFS was longer with non-detectable versus detectable baseline plasma EGFRm (HR, 0.54; 95% CI, 0.41-0.70; P < 0.0001). For Week 3 clearance versus non-clearance (n = 334), respectively, mPFS was 19.8 (15.1 to not calculable) versus 11.3 (9.5-16.5) with osimertinib and 10.8 (9.7-11.1) versus 7.0 (5.6-8.3) with comparator EGFR-TKI. Similar outcomes were observed by Week 6 clearance/non-clearance. CONCLUSIONS: Plasma EGFRm analysis as early as 3 weeks on-treatment has the potential to predict outcomes in EGFRm advanced NSCLC.

11.
Cancer Discov ; 13(1): 98-113, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36264123

RESUMEN

MET-inhibitor and EGFR tyrosine kinase inhibitor (EGFR-TKI) combination therapy could overcome acquired MET-mediated osimertinib resistance. We present the final phase Ib TATTON (NCT02143466) analysis (Part B, n = 138/Part D, n = 42) assessing oral savolitinib 600 mg/300 mg once daily (q.d.) + osimertinib 80 mg q.d. in patients with MET-amplified, EGFR-mutated (EGFRm) advanced non-small cell lung cancer (NSCLC) and progression on prior EGFR-TKI. An acceptable safety profile was observed. In Parts B and D, respectively, objective response rates were 33% to 67% and 62%, and median progression-free survival (PFS) was 5.5 to 11.1 months and 9.0 months. Increased antitumor activity may occur with MET copy number ≥10. EGFRm circulating tumor DNA clearance on treatment predicted longer PFS in patients with detectable baseline ctDNA, while acquired resistance mechanisms to osimertinib + savolitinib were mediated by MET, EGFR, or KRAS alterations. SIGNIFICANCE: The savolitinib + osimertinib combination represents a promising therapy in patients with MET-amplified/overexpressed, EGFRm advanced NSCLC with disease progression on a prior EGFR-TKI. Acquired resistance mechanisms to this combination include those via MET, EGFR, and KRAS. On-treatment ctDNA dynamics can predict clinical outcomes and may provide an opportunity to inform earlier decision-making. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Compuestos de Anilina/uso terapéutico , Receptores ErbB
12.
BMC Genomics ; 13 Suppl 1: S1, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22369349

RESUMEN

BACKGROUND: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) is increasingly being applied to study genome-wide binding sites of transcription factors. There is an increasing interest in understanding the mechanism of action of co-regulator proteins, which do not bind DNA directly, but exert their effects by binding to transcription factors such as the estrogen receptor (ER). However, due to the nature of detecting indirect protein-DNA interaction, ChIP-seq signals from co-regulators can be relatively weak and thus biologically meaningful interactions remain difficult to identify. RESULTS: In this study, we investigated and compared different statistical and machine learning approaches including unsupervised, supervised, and semi-supervised classification (self-training) approaches to integrate multiple types of genomic and transcriptomic information derived from our experiments and public database to overcome difficulty of identifying functional DNA binding sites of the co-regulator SRC-1 in the context of estrogen response. Our results indicate that supervised learning with naïve Bayes algorithm significantly enhances peak calling of weak ChIP-seq signals and outperforms other machine learning algorithms. Our integrative approach revealed many potential ERα/SRC-1 DNA binding sites that would otherwise be missed by conventional peak calling algorithms with default settings. CONCLUSIONS: Our results indicate that a supervised classification approach enables one to utilize limited amounts of prior knowledge together with multiple types of biological data to enhance the sensitivity and specificity of the identification of DNA binding sites from co-regulator proteins.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Factores de Transcripción/metabolismo , Algoritmos , Inteligencia Artificial , Sitios de Unión , ADN/metabolismo
13.
Breast Cancer Res ; 14(5): 323, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23113888

RESUMEN

The continuing advancement of sequencing technologies has made the systematic identification of all driving somatic events in cancer a possibility. In the June 2012 issue of Nature, five papers show some significant headway in this endeavor, each a herculean effort of genome sequencing, and transcriptome and copy number analysis resulting in data on thousands of breast cancers. Integrating these massive datasets, the authors were able to further subdivide breast cancer and identify a number of novel driver genes. While the studies represent a leap forward in describing the genomics of breast cancer, and clearly highlight the tremendous diversity between tumors, the studies only scrape the surface of molecular changes in breast tumors, with more granularity to come from the study of epigenomics, single cell sequencing, and so on. The immediate importance of the data to clinical care is currently unknown, and will depend upon detailed identification and functional analysis of driver mutations.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/metabolismo , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Mutagénesis/genética , Mutación/genética , Oncogenes/genética , Translocación Genética/genética , Femenino , Humanos
14.
Breast Cancer Res Treat ; 136(1): 253-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23015261

RESUMEN

Silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), also known as nuclear corepressor 2 (NCOR2) is a transcriptional corepressor for multiple members of the nuclear receptor superfamily of transcription factors, including estrogen receptor-α (ERα). In the classical model of corepressor action, SMRT binds to antiestrogen-bound ERα at target promoters and represses ERα transcriptional activity and gene expression. Herein SMRT mRNA and protein expression was examined in a panel of 30 breast cancer cell lines. Expression of both parameters was found to vary considerably amongst lines and the correlation between protein and mRNA expression was very poor (R (2) = 0.0775). Therefore, SMRT protein levels were examined by immunohistochemical staining of a tissue microarray of 866 patients with stage I-II breast cancer. Nuclear and cytoplasmic SMRT were scored separately according to the Allred score. The majority of tumors (67 %) were negative for cytoplasmic SMRT, which when detected was found at very low levels. In contrast, nuclear SMRT was broadly detected. There was no significant difference in time to recurrence (TTR) according to SMRT expression levels in the ERα-positive tamoxifen-treated patients (P = 0.297) but the difference was significant in the untreated patients (P = 0.01). In multivariate analysis, ERα-positive tamoxifen-untreated patients with high nuclear SMRT expression (SMRT 5-8, i.e., 2nd to 4th quartile) had a shorter TTR (HR = 1.94, 95 % CI, 1.24-3.04; P = 0.004) while there was no association with SMRT expression for ERα-positive tamoxifen-treated patients. There was no association between SMRT expression and overall survival for patients, regardless of whether they received tamoxifen. Thus while SMRT protein expression was not predictive of outcome after antiestrogen therapy, it may have value in predicting tumor recurrence in patients not receiving adjuvant tamoxifen therapy.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Co-Represor 2 de Receptor Nuclear/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Co-Represor 2 de Receptor Nuclear/genética , Análisis de Supervivencia , Tamoxifeno/administración & dosificación , Análisis de Matrices Tisulares
15.
Clin Cancer Res ; : OF1-OF10, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35735998

RESUMEN

BACKGROUND: MEK/ERK inhibition can overcome acquired resistance to osimertinib in preclinical models. Osimertinib [EGFR-tyrosine kinase inhibitor (TKI)] plus selumetinib (MEK1/2 inhibitor) was assessed in the global TATTON study. METHODS: This multicenter, open-label, phase Ib study expansion cohort enrolled patients (aged ≥18 years) with MET-negative, EGFRm advanced NSCLC who had progressed on EGFR-TKIs. Patients were assigned to one of two cohorts by prior first- or second-generation or T790M-directed EGFR-TKI and received osimertinib 80 mg every day and intermittent selumetinib 75 mg twice a day orally. Safety and tolerability (primary objective) and antitumor activity determined by objective response rate (ORR), and progression-free survival (PFS) using RECIST v1.1 were assessed. Data cutoff: March 4, 2020. RESULTS: Forty-seven patients received treatment (prior first- or second-generation EGFR-TKI, n = 12; prior T790M-directed EGFR-TKI, n = 35). Forty-four (94%) patients were Asian; 30 (64%) had baseline exon 19 deletion. Most common AEs were diarrhea (89%), decreased appetite (40%), and stomatitis (32%); 11/47 patients (23%) had an AE Grade ≥3 possibly causally selumetinib-related. ORR was 66.7% [95% confidence interval (CI), 34.9-90.1] in the prior first- or second-generation EGFR-TKI group, 22.9% (95% CI, 10.4-40.1) in the prior T790M-directed EGFR-TKI group, and 34.0% (95% CI, 20.9-49.3) overall; median PFS was 15.0 (95% CI, 2.7-33.0), 2.8 (95% CI, 1.6-5.5), and 4.2 months (95% CI, 2.7-7.2), respectively. CONCLUSIONS: In this small study, AEs and tolerability of osimertinib plus selumetinib were as expected, on the basis of previous studies. The combination demonstrated antitumor activity supportive of further investigation in patients with MET-negative, EGFRm advanced NSCLC who had progressed on a previous EGFR-TKI.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34250382

RESUMEN

Plasma cell-free DNA (cfDNA) sequencing is a compelling diagnostic tool in solid tumors and has been shown to have high positive predictive value. However, limited assay sensitivity means that negative plasma genotyping, or the absence of detection of mutation of interest, still requires reflex tumor biopsy. METHODS: We analyzed two independent cohorts of patients with advanced non-small-cell lung cancer (NSCLC) with known canonical driver and resistance mutations who underwent plasma cfDNA genotyping. We measured quantitative features, such as maximum allelic frequency (mAF), as clinically available measures of cfDNA tumor content, and studied their relationship with assay sensitivity. RESULTS: In patients with EGFR-mutant NSCLC harboring EGFR T790M, detection of driver mutation at > 1% AF conferred a sensitivity of 97% (368/380) for detection of T790M across three cfDNA genotyping platforms. Similarly, in a second cohort of patients with EGFR or KRAS driver mutations, when the mAF of nontarget mutations was > 1%, sensitivity for driver mutation detection was 100% (43/43). Combining the two NSCLC patient cohorts, the presence of nontarget mutations at mAF > 1% predicts for high sensitivity (> 95%) for identifying the presence of the known driver mutation, whereas mAF of ≤ 1% confers sensitivity of only 26%-54% across platforms. Focusing on 21 false-negative cases where the driver mutation was not detected on plasma next-generation sequencing, other mutations (presumably clonal hematopoiesis) were detected at ≤ 1% AF in 14 (67%). CONCLUSION: Plasma cfDNA genotyping is highly sensitive when adequate tumor DNA content is present. The likelihood of a false-negative cfDNA genotyping result is low in a sample with evidence of > 1% tumor content. Bioinformatic approaches are needed to further optimize the assessment of cfDNA tumor content in plasma genotyping assays.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Genotipo , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Humanos , Sensibilidad y Especificidad
17.
Nat Commun ; 12(1): 1780, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741979

RESUMEN

Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación Missense , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Receptores ErbB/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
18.
Endocr Relat Cancer ; 28(10): 671-681, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34410225

RESUMEN

Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/patología , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Femenino , Genómica , Humanos , Persona de Mediana Edad , Mutación
19.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33963375

RESUMEN

The steroid receptor coactivator-1 (SRC-1) is a nuclear receptor co-activator, known to play key roles in both estrogen response in bone and in breast cancer metastases. We previously demonstrated that the P1272S single nucleotide polymorphism (SNP; P1272S; rs1804645) in SRC-1 decreases the activity of estrogen receptor in the presence of selective estrogen receptor modulators (SERMs) and that it is associated with a decrease in bone mineral density (BMD) after tamoxifen therapy, suggesting it may disrupt the agonist action of tamoxifen. Given such dual roles of SRC-1 in the bone microenvironment and in tumor cell-intrinsic phenotypes, we hypothesized that SRC-1 and a naturally occurring genetic variant, P1272S, may promote breast cancer bone metastases. We developed a syngeneic, knock-in mouse model to study if the SRC-1 SNP is critical for normal bone homeostasis and bone metastasis. Our data surprisingly reveal that the homozygous SRC-1 SNP knock-in increases tamoxifen-induced bone protection after ovariectomy. The presence of the SRC-1 SNP in mammary glands resulted in decreased expression levels of SRC-1 and reduced tumor burden after orthotopic injection of breast cancer cells not bearing the SRC-1 SNP, but increased metastases to the lungs in our syngeneic mouse model. Interestingly, the P1272S SNP identified in a small, exploratory cohort of bone metastases from breast cancer patients was significantly associated with earlier development of bone metastasis. This study demonstrates the importance of the P1272S SNP in both the effect of SERMs on BMD and the development of tumor in the bone.


Asunto(s)
Adenocarcinoma/secundario , Densidad Ósea/genética , Neoplasias Óseas/secundario , Neoplasias Mamarias Experimentales/patología , Coactivador 1 de Receptor Nuclear/fisiología , Adenocarcinoma/genética , Animales , Neoplasias Óseas/genética , Huesos/efectos de los fármacos , Huesos/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnicas de Sustitución del Gen , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/genética , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología
20.
PLoS One ; 15(5): e0231999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374727

RESUMEN

BACKGROUND: Metastatic breast cancer is the leading cause of cancer death in women, but the genomics of metastasis in breast cancer are poorly studied. METHODS: We explored a set of 11,616 breast tumors, including 5,034 metastases, which had undergone targeted sequencing during standard clinical care. RESULTS: Besides the known hotspot mutations in ESR1, we observed a metastatic enrichment of previously unreported, lower-prevalence mutations in the ligand-binding domain, implying that these mutations may also be functional. Furthermore, individual ESR1 hotspots are significantly enriched in specific metastatic tissues and histologies, suggesting functional differences between these mutations. Other alterations enriched across all metastases include loss of function of the CDK4 regulator CDKN1B, and mutations in the transcription factor CTCF. Mutations enriched at specific metastatic sites generally reflect biology of the target tissue and may be adaptations to growth in the local environment. These include PTEN and ASXL1 alterations in brain metastases and NOTCH1 alterations in skin. We observed an enrichment of KRAS, KEAP1, STK11 and EGFR mutations in lung metastases. However, the patterns of other mutations in these tumors indicate that these are misdiagnosed lung primaries rather than breast metastases. CONCLUSIONS: An order-of-magnitude increase in samples relative to previous studies allowed us to detect novel genomic characteristics of metastatic cancer and to expand and clarify previous findings.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adulto , Neoplasias de la Mama/epidemiología , Estudios de Casos y Controles , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Frecuencia de los Genes , Genes erbB-2 , Genómica , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metástasis Linfática , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA