Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomed Microdevices ; 26(3): 30, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913209

RESUMEN

Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.


Asunto(s)
Metales Pesados , Metales Pesados/análisis , Agua/química , Electrónica , Contaminantes Químicos del Agua/análisis , Iones/química , Iones/análisis
2.
FASEB J ; 36(6): e22341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35579877

RESUMEN

Multiple myeloma (MM), the terminally differentiated B cells malignancy, is widely considered to be incurable since many patients have either developed drug resistance or experienced an eventual relapse. To develop precise and efficient therapeutic strategies, we must understand the pathogenesis of MM. Thus, unveiling the driver events of MM and its further clonal evolution will help us understand this complicated disease. Chromosome 1 instabilities are the most common genomic alterations that participate in MM pathogenesis, and these aberrations of chromosome 1 mainly include copy number variations and structural changes. The chromosome 1q gains/amplifications and 1p deletions are the most frequent structural changes of chromosomes in MM. In this review, we intend to focus on the genes that are affected by chromosome 1 instability: some tumor suppressors were lost or down regulated in 1p deletions, and others that contributed to tumorigenesis were upregulated in 1q gains/amplifications. We have summarized their biological function as well as their roles in the MM pathogenesis, hoping to uncover potential novel therapeutical targets and promote the development of future therapeutic approaches.


Asunto(s)
Mieloma Múltiple , Inestabilidad Cromosómica , Aberraciones Cromosómicas , Cromosomas Humanos Par 1/genética , Variaciones en el Número de Copia de ADN , Expresión Génica , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia
3.
Chemphyschem ; 24(10): e202200734, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36759329

RESUMEN

Nitrogen-doped carbons (N/Cs) manifest good catalytic performance for oxygen reduction reaction (ORR) for fuel cell systems. However, to date, controversies remain on the role of active sites in N/Cs. In the present study, ORR test was conducted on three N/Cs in O2 -saturated 0.1 M KOH aqueous solution, where apparent linear correlation between graphitic N contents and ORR activity was observed. Theoretical calculations demonstrated that graphitic N doping is energetically more favorable than that of pyridinic N doping for ORR and the pyridinic N leads to more preferential with 2 e- ORR pathway. These results reveal that graphitic N plays a key role in N/Cs mediated ORR activity. This work lays a solid foundation on identifying the active sites in heteroatom-doped carbons and can be exploited for rational design and engineering of effective carbon-based ORR catalysts.

4.
J Perianesth Nurs ; 38(4): 579-584, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36732123

RESUMEN

PURPOSE: In our previous study, hypokalemia incidence was high in patients scheduled for laparoscopic colorectal resection. This trial was conducted to verify the effects of preoperative carbohydrate drinks containing potassium in these patients. DESIGN: A three-arm randomized controlled design was used. METHODS: Patients were randomly assigned to control, placebo, and treatment groups. In the control group, patients fasted from midnight. In the placebo group, patients fasted from midnight and received carbohydrate drinks 2 to 3 hours before surgery. In the treatment group, patients fasted from midnight and received carbohydrate drinks containing potassium supplementation 2 to 3 hours before surgery. The primary outcome was the incidence and severity of preoperative hypokalemia. Other outcomes included postoperative gastrointestinal function, including the time to postoperative first flatus (FFL) and first feces (FFE), and other complications. FINDINGS: The final analysis included 122 participants. The incidence of preoperative hypokalemia in the treatment group was significantly lower than that in the control and placebo groups (50% vs 88.1% vs 77.5%, P < .001). The severity of hypokalemia in the control and placebo groups was greater than that in the treatment group. No regurgitation or aspiration occurred in the three groups. No significant differences were observed among the three groups regarding time to FFL and FFE. CONCLUSIONS: Preoperative carbohydrate drinks containing potassium significantly reduced the incidence of preoperative hypokalemia and improved preoperative thirst and hunger, but did not reduce the postoperative time to FFL and FFE or length of hospital stay. However, as part of the enhanced recovery after surgery protocol, preoperative carbohydrate drinks containing potassium should be considered, as early as first admittance to hospital.


Asunto(s)
Neoplasias Colorrectales , Hipopotasemia , Laparoscopía , Humanos , Hipopotasemia/prevención & control , Incidencia , Cuidados Preoperatorios/métodos , Carbohidratos , Potasio , Electrólitos
5.
Microb Pathog ; 173(Pt A): 105875, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356793

RESUMEN

Exosomes have been shown to release from cells infected by viruses and deliver viral particles, genomes, and other viral genetic elements to neighboring cells resulting in modulating host immune response. Our previous study demonstrated that exosomes released from Enterovirus 71 (EV71)-infected cells contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182, which can be successfully transferred to recipient/target cells to establish productive infection. However, the molecular mechanisms that control viral genome package into exosomes are still unclear. In this study, we showed that the EV71-induced autophagy response contributed to viral genome package into exosomes rather than process of exosomes biogenesis. Further study showed that the autophagosomes accumulation facilitated their fusion with MVBs, which resulted in EV71 RNA package into exosome vesicles. Moreover, prevention of autophagosomes-MVBs fusion could abolish this sorting of viral RNA into exosomes. Knockdown of GW182 or Ago2 could weaken the replication ability of exosomal EV71 RNA in recipient cells through decreasing the amount of miR-146a in exosomes, but did not affect the package of viral RNA into exosomes. Our findings strongly suggested that the accumulation of autophagosomes that were induced by EV71 infection play a key role on viral spreading through exosome vesicles.


Asunto(s)
Enterovirus Humano A , Enterovirus , Exosomas , MicroARNs , Cuerpos Multivesiculares , ARN Viral/genética , Enterovirus Humano A/genética , Autofagosomas , Enterovirus/genética , MicroARNs/genética
6.
Environ Res ; 204(Pt C): 112223, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34688644

RESUMEN

This study investigated a novel sodium iron chlorophyllin-H2O2 (SIC-H2O2) sludge pretreatment strategy before anaerobic digestion to enhance methane production. The efficiencies and mechanism of the proposed strategy to enhance sludge biodegradability were explored. The SIC-H2O2 pretreatment could enhance the oxidation performance for sludge floc disintegration to dissociate TB-EPS into S-EPS increased SCOD to 521.38 mg/L. The increase of solubilization and release of EPS with the pretreatment facilitate the biogas production at 702 L kg-1 VS, which was 3-folds of the control and significantly higher than other pretreatments. The result of excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis showed that the SIC-H2O2 pretreatment enhanced the dissociation of TB-EPS fractions, especially the protein-like and soluble microbial by-product-like substances. Electron paramagnetic resonance (EPR) results provided evidence for homolytic catalysis H2O2 for the generation OH and the production of high-valent (Por)FeIV(O) intermediates. Synergistic effects of reactive oxygen species (OH, H2O2 and /HO2) and (Por)FeIV(O) enhanced the EPS disintegration during SIC-H2O2 pretreatment. The mixed-acid type fermentation provided continuous VFAs supply under the enrichment of Chloroflexi and Actinobacteria and multiplication Methanosaeta also promoted methane production. This research provides a feasible pretreatment strategy increase sludge biodegradability and enhance biogas production in the anaerobic digestion process.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Anaerobiosis , Biocombustibles/análisis , Reactores Biológicos , Clorofilidas , Peróxido de Hidrógeno , Metano , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos
7.
Environ Res ; 203: 111825, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364865

RESUMEN

Deep dewatering of sewage sludge pretreated with advanced oxidation processes (AOPs) is a strategy for efficient sludge reduction and subsequent disposal. The pretreatment and dewatering performance of sludge conditioned with three types of AOPs (Fe2+/H2O2, Fe2+/Ca(ClO)2, and Fe2+/Na2S2O8), compared with sludge conditioned with traditional conditioner (Fe3+/CaO), were investigated in both bench and pilot-scale tests. All of those conditioner systems could reduce the water content of dewatered sludge cake to below 60 wt% in bench-scale (about 16 kg raw sludge per round) and pilot-scale (approximate 800 kg raw sludge per round) diaphragm filter press dewatering. Compared with raw sludge, the deep-dewatering filtrate after different conditioning and dewatering processes had higher ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) contents due to the degradation of organic matter, and much lower total phosphorus (TP) content due to the formation of iron phosphate precipitate. A better biodegradability (i.e. higher BOD5/COD ratio) was found in the deep-dewatering filtrate of sludge conditioned with Fe2+/H2O2 (25.2 %) and Fe2+/Ca(ClO)2 (17.4 %). Most of the heavy metals (Cr, Cu, Ni, and Pb) (>79 wt%) have remained in the dewatered sludge cake, and most of the Cl element (>90 wt%) in the sludge pretreated by Fe2+/Ca(ClO)2 and Fe3+/CaO was kept in the filtrate, rather than the dewatered sludge cake. Based on the pilot-scale experimental results, if all the filtrate in the deep-dewatering process returned to the influent of WWTP, the loading ratios of TP, NH4+-N, COD in the four conditioner systems were less than 3 wt%. The above results proved that the AOPs conditioned sludge could achieve deep-dewatering in pilot-scale and the direct recirculation of deep-dewatering filtrate to the influent of wastewater treatment plant was feasible.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Peróxido de Hidrógeno , Eliminación de Residuos Líquidos , Agua
8.
Parasite Immunol ; 43(8): e12842, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33959966

RESUMEN

AIMS: Schistosomiasis is a parasitic disease with a chronic debilitating character caused by parasitic flatworms of the genus Schistosoma. The main disease-causing species of Schistosoma in China is S. japonicum. M fortis has been proved to be a nonpermissive host of S. japonicum. Mf-HSP90α (Microtus fortis heat shock protein 90alpha), the homologue of HSP90α, display anti-schistosome effect in vitro and in vivo. In the current study, in order to investigate the mechanism of anti-schistosome effect of Mf-HSP90α, we conducted RNA-Seq to obtain the transcriptome profile of M. fortis liver infected with S. japonicum at different time points. METHODS AND RESULTS: By mapping the differential expressed genes (DEGs) to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the JAK2/STAT1 pathway was highly enriched with an elevated level of IL-10 and HSP90α. We then checked the IL-10-JAK2/STAT1-HSP90α pathway, and found that this pathway was activated in the infected mice with S. japonicum. The expression of the molecules in this pathway was elevated on the 10th day after infection and gradually decreased on the 20th day. CONCLUSIONS: The IL-10-JAK2/STAT1-HSP90α axis was associated with the anti-schistosome effect of Mf-HSP90α, and targeting IL-10-JAK2/STAT1-HSP90α axis might be a novel therapeutic strategy for developing resistance to S. japonicum infection.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Arvicolinae , Hígado , Ratones , Transcriptoma
9.
Environ Res ; 196: 110328, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33075357

RESUMEN

How to efficiently improve waste activated sludge (WAS) dewaterability is a common challenge in WAS treatment and management throughout world. The interaction energy of sludge flocs is of great importance for sludge dewaterability. In this study, the relationship among the repulsive force of sludge flocs, hydrophilic/hydrophobic characteristics of sludge flocs, and sludge dewaterability have been quantitatively and qualitatively investigated based on extended Derjaguin-Landau-Verwey-Overbeek theory for the first time. The energy barrier of sludge flocs has good correlations with sludge dewaterability (p < 0.05). Trivalent cations (Al3+ and Fe3+) and Fenton's reagent reduced the interfacial free energy (ΔG) from 9.4 mJ/m2 of raw sludge to -34.2 (Al3+), -60.5 (Fe3+), and -63.2 (Fenton) mJ/m2, respectively, indicating that the hydrophilic surfaces of the sludge flocs converted to hydrophobic (△G < 0), and decreasing Lewis acid-base interaction energy (WAB) of sludge flocs. In addition, most of the trivalent cations (Al3+ and Fe3+) were attached to sludge flocs, leading to neutralize negative charges and mitigate electrostatic interaction energy (WR) of sludge flocs. The reduction of WAB and WR eliminated energy barrier of sludge flocs and repulsive force between sludge flocs. In comparison, monovalent (Na+ and K+) and bivalent (Ca2+ and Mn2+) cations cannot completely change the hydrophilic surface characteristic and negative charge of sludge flocs. The existed energy barrier prevented sludge flocs to agglomerate with each other, thus resulting in a worse dewaterability. This study illustrated that reducing interaction energy of sludge flocs played a critical role to improve sludge dewaterability.


Asunto(s)
Aguas del Alcantarillado , Agua , Cationes , Interacciones Hidrofóbicas e Hidrofílicas , Eliminación de Residuos Líquidos
10.
J Mol Cell Cardiol ; 139: 75-86, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31982429

RESUMEN

AIMS: The antimicrobial peptide cathelicidin (Camp) has multifunctional immunomodulatory activities. However, its roles in inflammation-related myocardial ischemia/reperfusion (MI/R) injury remain unclear. METHODS AND RESULTS: In this study, adult male C57BL/6 wild-type (WT) mice were subjected to MI/R injury by left anterior descending coronary artery ligation for 45 min followed by 3 or 24 h of reperfusion. An abundant cardiac expression of cathelicidin was observed during ischemia and reperfusion, which was mainly derived from heart-infiltrating neutrophils. Knockout of Camp in mice reduced MI/R-induced myocardial inflammation, infarct size, and circulating cTnI levels (an indicator of heart damage). CRAMP (the mature form of murine cathelicidin) administration of WT mice immediately before MI/R exerted detrimental effects on the reperfused heart. CRAMP exacerbates MI/R injury via a TLR4 and P2X7R/NLRP3 inflammasome-dependent mechanism, since I/R-induced myocardial infarction was reserved by inhibition of TLR4, P2X7R, or NLRP3 inflammasome in CRAMP-treated WT mice. Depletion of neutrophils before MI/R abrogated the amplification of infarct size in CRAMP-treated WT mice. Heart-infiltrating neutrophils were found to be one of major cellular sources of myocardial IL-1ß (a "first line" pro-inflammatory cytokine) at the early stage of MI/R. At this stage, CRAMP administration just before MI/R induced pro-IL-1ß protein expression in heart-infiltrating neutrophils, but not in non-neutrophils. In vitro experiments showed that LL-37 (the mature form of human cathelicidin) treatment promotes the processing and secretion of IL-1ß from human neutrophils via stimulating TLR4 signaling and P2X7R/NLRP3 inflammasome. CONCLUSIONS: Our findings reveal that, at the early stage of MI/R, neutrophil-derived cathelicidin plays an injurious role in the heart. Cathelicidin aggravates MI/R injury by over-activating TLR4 signaling and P2X7R/NLRP3 inflammasome in heart-infiltrating neutrophils, which leads to the excessive secretion of IL-1ß and subsequent inflammatory injury.


Asunto(s)
Catelicidinas/metabolismo , Inflamasomas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Infiltración Neutrófila
11.
Virus Genes ; 56(5): 557-563, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32500372

RESUMEN

In this study, we investigated drug resistance levels in human immunodeficiency virus (HIV)-1-infected patients in Suzhou by retrospectively analyzing this property and the characteristics of circulating HIV-1 strains collected from 2009 to 2014. A total of 261 HIV-1-positive plasma samples, confirmed by the Suzhou CDC, were collected and evaluated to detect HIV-1 drug resistance genotypes using an in-house method. The pol gene fragment was amplified, and its nucleic acid sequence was determined by Sanger sequencing. Drug resistance mutations were then analyzed using the Stanford University HIV resistance database ( https://hivdb.stanford.edu ). A total of 216 pol gene fragments were amplified and sequenced with 16.7% (36/216) of sequences revealing these mutations. The drug resistance rates of protease, nucleoside reverse transcriptase, and non-nucleoside reverse transcriptase inhibitors (NNRTIs) were 4/36 (11.1%), 2/36 (5.6%), and 30/36 (83.3%), respectively. Five surveillance drug resistance mutations were found in 36 sequences, of which, three were found among specimens of men who have sex with men. Potential low-level resistance accounted for 33% of amino acid mutations associated with NNRTIs. Two of the mutations, M230L and L100I, which confer a high level of resistance efavirenz (EFV) and nevirapine (NVP) used as NNRTIs for first-line antiretroviral therapy (ART), were detected in this study. Therefore, when HIV-1 patients in Suzhou are administered fist-line ART, much attention should be paid to the status of these mutations that cause resistance to EVP, EFV, and NVP.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH , VIH-1 , Adulto , China/epidemiología , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Adulto Joven
12.
Environ Res ; 191: 110050, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828760

RESUMEN

A novel method to enhance sludge dewaterability with ammonium sulfate ((NH4)2SO4) was proposed, and the potential reuse of dewatered sludge cake and filtrate as nitrogen fertilizers was evaluated. Compared with raw sludge, 87.91% reduction of capillary suction time (CST) and 88.02% reduction of specific resistance to filtration (SRF) after adding 80% (m/m) (NH4)2SO4 were achieved, with 38.49% of protein precipitated simultaneously. The (NH4)2SO4 dose destroyed cell membrane, resulting in the release of intracellular water by converting bound water into free water, thus enhancing sludge dewaterability. In the solid phase, the content of protein-N increased, and larger protein aggregates were formed. The (NH4)2SO4 dose destroyed the hydration shell, making proteins to exhibit hydrophobic interactions, and to be aggregated, and precipitated from the liquid phase. When incubated Pennisetum alopecuroides L. with the dewatered sludge cake and filtrate after dewatering and conditioning with (NH4)2SO4, the germination rate of grass seed and shoot lengths both increased while compared with those incubated with dewatered sludge cake and filtrate of the raw sludge. This study might provide insights into sustainable sludge treatment by integrating sludge dewatering and the potential reuse of dewatered sludge cake and filtrate as nitrogen fertilizer via treatment with (NH4)2SO4.


Asunto(s)
Fertilizantes , Aguas del Alcantarillado , Sulfato de Amonio , Filtración , Nitrógeno , Eliminación de Residuos Líquidos , Agua
13.
Environ Res ; 181: 108906, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31740039

RESUMEN

MFC toxicity sensor has major hindrances that limit its practical application, such as the poor concentration-response relationship and inferior recovery capability after high toxicity shock. Till now, the direct influence of intrinsic properties on the performance of MFC toxicity sensor has not been well understood. Quorum sensing (QS) is a cell-to-cell communication strategy that indirectly affects the intrinsic properties of electroactive biofilms. In this work, commercially available QS autoinducers (AHLs) were applied to MFC toxicity sensor to manipulate anode biofilm for better sensing performance. The results showed that the addition of AHLs (C6-HSL, 3-OXO-C12-HSL) led to higher sensing linearity to a wider range of Pb2+. The voltage of MFC sensors with AHLs addition fully recovered even after 10 mg/L Cu2+ shock, indicating an enhanced recovery capability of MFC toxicity sensor. It was found that higher live/dead cells ratio and increased exoelectrogen Geobacter abundance were responsible for the superior sensing linearity and recovery capability of MFC toxicity sensor. Our work presented a novel and effective way to advance the process of MFC toxicity sensor application from the perspective of EABs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Percepción de Quorum , Biopelículas , Electrodos
14.
J Environ Sci (China) ; 96: 1-20, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32819684

RESUMEN

Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with positive energy and high effluent quality. Microbial fuel cells (MFCs) were launched in the last two decades as a potential treatment technology with bioelectricity generation accompanied with simultaneous carbon and nutrient removal. This study reviews capability and mechanisms of carbon, nitrogen and phosphorous removal from landfill leachate through MFC technology, as well as summarizes and discusses the recent advances of standalone and hybrid MFCs performances in landfill leachate (LFL) treatment. Recent improvements and synergetic effect of hybrid MFC technology upon the increasing of power densities, organic and nutrient removal, and future challenges were discussed in details.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eliminación de Residuos , Contaminantes Químicos del Agua , Nitrógeno , Instalaciones de Eliminación de Residuos
15.
J Cell Mol Med ; 23(8): 5076-5086, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31144421

RESUMEN

U2AF1 (U2AF35) is the small subunit of the U2 auxiliary factor (U2AF) that constitutes the U2 snRNP (small nuclear ribonucleoproteins) of the spliceosome. Here, we examined the function of U2AF1 in human erythropoiesis. First, we examined the expression of U2AF1 during in vitro human erythropoiesis and showed that U2AF1 was highly expressed in the erythroid progenitor burst-forming-unit erythroid (BFU-E) cell stage. A colony assay revealed that U2AF1 knockdown cells failed to form BFU-E and colony-forming-unit erythroid (CFU-E) colonies. Our results further showed that knockdown of U2AF1 significantly inhibited cell growth and induced apoptosis in erythropoiesis. Additionally, knockdown of U2AF1 also delayed terminal erythroid differentiation. To explore the molecular basis of the impaired function of erythroid development, RNA-seq was performed and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that several biological pathways, including the p53 signalling pathway, MAPK signalling pathway and haematopoietic cell lineage, were involved, with the p53 signalling pathway showing the greatest involvement. Western blot analysis revealed an increase in the protein levels of downstream targets of p53 following U2AF1 knockdown. The data further showed that depletion of U2AF1 altered alternatively spliced apoptosis-associated gene transcripts in CFU-E cells. Our findings elucidate the role of U2AF1 in human erythropoiesis and reveal the underlying mechanisms.


Asunto(s)
Proliferación Celular/genética , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Factor de Empalme U2AF/genética , Células Precursoras Eritroides/citología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , RNA-Seq , Transducción de Señal/genética , Empalmosomas/genética , Proteína p53 Supresora de Tumor/genética
16.
J Am Chem Soc ; 141(33): 13043-13048, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31381311

RESUMEN

The synthetically challenging, diverse chemical skeletons and promising biological profiles of the Daphniphyllum alkaloids have generated intense interest from the synthetic chemistry community. Herein, the first and enantioselective total synthesis of (-)-caldaphnidine O, a complex bukittinggine-type Daphniphyllum alkaloid, is described. The key transformations in this concise approach included an intramolecular aza-Michael addition, a ring expansion reaction sequence, a Sm(II)/Fe(III)-mediated Kagan-Molander coupling, and the rapid formation of the entire hexacyclic ring skeleton of the target molecule via a radical cyclization cascade reaction, which was inspired by an unexpected radical detosylation observed in our recent dapholdhamine B synthesis.

17.
Microb Cell Fact ; 18(1): 66, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947747

RESUMEN

BACKGROUND: Oral vaccine is highly desired for infectious disease which is caused by pathogens infection through the mucosal surface. The design of suitable vaccine delivery system is ongoing for the antigen protection from the harsh gastric environment and target to the Peyer's patches to induce sufficient mucosal immune responses. Among various potential delivery systems, bacterial inclusion bodies have been widely used as delivery systems in the field of nanobiomedicine. However, a large number of heterologous complex proteins could be difficult to propagate in E. coli and fusion partners are often used to enhance target protein expression. As a safety concern the fusion protein need to be removed from the target protein to get tag-free protein, especially for the production of protein antigen in vaccinology. Until now, there is no report on how to remove fusion tag from inclusion body particles in vitro and in vivo. Coxsackievirus B3 (CVB3) is a leading causative agent of viral myocarditis and orally protein vaccine is high desired for CVB3-induced myocarditis. In this context, we explored a tag-free VP1 inclusion body nanoparticles production protocol though a truncated Ssp DnaX mini-intein spontaneous C-cleavage in vivo and also exploited the VP1 inclusion bodies as an oral protein nanoparticle vaccine to protect mice against CVB3-induced myocarditis. RESULTS: We successfully produced the tag-free VP1 inclusion body nanoparticle antigen of CVB3 and orally administrated to mice. The results showed that the tag-free VP1 inclusion body nanoparticles as an effective antigen delivery system targeting to the Peyer's patches had the capacity to induce mucosal immunity as well as to efficiently protect mice from CVB3 induce myocarditis without any adjuvant. Then, we proposed the use of VP1 inclusion body nanoparticles as good candidate for oral vaccine to against CVB3-induced myocarditis. CONCLUSIONS: Our tag-free inclusion body nanoparticles production procedure is easy and low cost and may have universal applicability to produce a variety of tag-free inclusion body nanoparticles for oral vaccine.


Asunto(s)
Proteínas de la Cápside/inmunología , Enterovirus Humano B/inmunología , Miocarditis/prevención & control , Vacunas Virales/inmunología , Administración Oral , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Enterovirus Humano B/química , Enterovirus Humano B/genética , Humanos , Inmunidad Mucosa , Inteínas , Masculino , Ratones , Ratones Endogámicos BALB C , Miocarditis/inmunología , Miocarditis/virología , Nanopartículas/química , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Vacunas Virales/genética
18.
Environ Sci Technol ; 53(5): 2748-2757, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30698959

RESUMEN

The recovery of copper (Cu0) from waste printed circuit boards (WPCBs) is a great challenge as a result of its heterogeneous structural properties, with a mixture of metals, epoxy resin, and fiberglass. In this study, a three-step sequential process, including mechanochemical processing, water leaching, and recrystallization, for Cu0 recovery from WPCB powder is reported. Potassium persulfate (K2S2O8), instead of acid/alkali reagents, was employed as the sole reagent in the cupric sulfate (CuSO4) regeneration process. Complete oxidation of Cu0 in the WPCBs to copper oxide (CuO) and CuSO4 was first achieved during mechanochemical processing with K2S2O8 as the solid oxidant, and the K2S2O8 was simultaneously converted to sulfate compounds [K3H(SO4)2] via a solid-solid reaction with epoxy resin (C nH mO y) as the hydrogen donator under mechanical force. The rapid leaching of Cu species in the forms of CuO and CuSO4 was therefore easily realized with pure water as a nontoxic leaching reagent. The kinetics of the leaching process of Cu species was confirmed to follow the shrinking nucleus model controlled by solid-film diffusion. Finally, CuSO4·5H2O was successfully separated by cooling crystallization of the hot saturated solution of sulfate salt [K2Cu(SO4)2·6H2O]. An efficient conversion of Cu0 to CuSO4·5H2O product, for WPCB recycling, was therefore established.


Asunto(s)
Cobre , Residuos Electrónicos , Ácidos , Metales , Reciclaje
19.
Mikrochim Acta ; 186(12): 776, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728707

RESUMEN

A delaminated MXene-bismuth (Bi@d-Ti3C2) nanocomposite was synthesized for the construction of a microgrid electrochemical sensor via mechanical milling. The Bi@d-Ti3C2 nanocomposite was synthesized by accumulation of Bi(III) on the surface of delaminated Ti3C2 nanosheets through electrostatic attraction and subsequent in-situ growth of bismuth nanorods. Under optimized experimental conditions, the sensor exhibits (a) linear responses to Pb(II), Cd(II) and Zn(II) in the concentration range from 1 to 20 µg L-1, (b) well separated peak potentials at -0.54 V, -0.76 V and - 1.15 V vs. Ag/AgCl, (c) sensitivities of 0.98, 0.84 and 0.60 µA L µg-1, and (d) detection limits of 0.2, 0.4 and 0.5 µg L-1, respectively. This performance is attributed to the uniform dispersion of Bi nanorods on electrically conductive delaminated Ti3C2 MXene, and to the enhanced diffusion due to the microgrid structure. Graphical abstractSchematic representation of a microgrid sensor based on delaminated MXene-bismuth (Bi@d-Ti3C2) nanocomposite for the simultaneous electrochemical determination of Pb(II), Cd(II) and Zn(II).

20.
Angew Chem Int Ed Engl ; 58(22): 7390-7394, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30958916

RESUMEN

The daphniphyllum alkaloids are a structurally fascinating and remarkably diverse family of natural products. General strategies for the chemical synthesis of their challenging architectures are highly desirable for efficiently accessing these intriguing alkaloids and addressing their pharmaceutical potential. Herein, a concise strategy designed to provide general and diversifiable access to various daphniphyllum alkaloids is described and utilized in the asymmetric synthesis of (-)-himalensine A, which was accomplished in 14 steps. Key features of this strategy include a Cu-catalyzed nitrile hydration, a Heck reaction to construct the challenging 2-azabicyclo[3.3.1]nonane motif, a Meinwald rearrangement reaction, six, pot-economic reactions, and the minimal use of protecting groups, which significantly improved the overall synthetic efficiency.


Asunto(s)
Alcaloides/síntesis química , Productos Biológicos/síntesis química , Catálisis , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA