Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proteins ; 91(12): 1616-1635, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37746927

RESUMEN

The results of tertiary structure assessment at CASP15 are reported. For the first time, recognizing the outstanding performance of AlphaFold 2 (AF2) at CASP14, all single-chain predictions were assessed together, irrespective of whether a template was available. At CASP15, there was no single stand-out group, with most of the best-scoring groups-led by PEZYFoldings, UM-TBM, and Yang Server-employing AF2 in one way or another. Many top groups paid special attention to generating deep Multiple Sequence Alignments (MSAs) and testing variant MSAs, thereby allowing them to successfully address some of the hardest targets. Such difficult targets, as well as lacking templates, were typically proteins with few homologues. Local divergence between prediction and target correlated with localization at crystal lattice or chain interfaces, and with regions exhibiting high B-factor factors in crystal structure targets, and should not necessarily be considered as representing error in the prediction. However, analysis of exposed and buried side chain accuracy showed room for improvement even in the latter. Nevertheless, a majority of groups produced high-quality predictions for most targets, which are valuable for experimental structure determination, functional analysis, and many other tasks across biology. These include those applying methods similar to those used to generate major resources such as the AlphaFold Protein Structure Database and the ESM Metagenomic atlas: the confidence estimates of the former were also notably accurate.


Asunto(s)
Biología Computacional , Furilfuramida , Biología Computacional/métodos , Modelos Moleculares , Proteínas/química , Alineación de Secuencia
2.
Proteins ; 91(12): 1747-1770, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876231

RESUMEN

The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.


Asunto(s)
Algoritmos , ARN , Biología Computacional/métodos , Proteínas/química
3.
Proc Natl Acad Sci U S A ; 117(28): 16363-16372, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601205

RESUMEN

The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming ß-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid ß-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Cistatinas/química , Amiloide/metabolismo , Amiloide/ultraestructura , Proteínas Amiloidogénicas/metabolismo , Animales , Cristalografía por Rayos X , Cistatinas/metabolismo , Epidídimo/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína
4.
Bioinformatics ; 37(17): 2763-2765, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499718

RESUMEN

SUMMARY: Covariance-based predictions of residue contacts and inter-residue distances are an increasingly popular data type in protein bioinformatics. Here we present ConPlot, a web-based application for convenient display and analysis of contact maps and distograms. Integration of predicted contact data with other predictions is often required to facilitate inference of structural features. ConPlot can therefore use the empty space near the contact map diagonal to display multiple coloured tracks representing other sequence-based predictions. Popular file formats are natively read and bespoke data can also be flexibly displayed. This novel visualization will enable easier interpretation of predicted contact maps. AVAILABILITY AND IMPLEMENTATION: available online at www.conplot.org, along with documentation and examples. Alternatively, ConPlot can be installed and used locally using the docker image from the project's Docker Hub repository. ConPlot is licensed under the BSD 3-Clause. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Programas Informáticos , Internet , Proteínas/genética
5.
Proc Natl Acad Sci U S A ; 116(35): 17251-17260, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31395737

RESUMEN

Microsomal triglyceride transfer protein (MTP) plays an essential role in lipid metabolism, especially in the biogenesis of very low-density lipoproteins and chylomicrons via the transfer of neutral lipids and the assembly of apoB-containing lipoproteins. Our understanding of the molecular mechanisms of MTP has been hindered by a lack of structural information of this heterodimeric complex comprising an MTPα subunit and a protein disulfide isomerase (PDI) ß-subunit. The structure of MTP presented here gives important insights into the potential mechanisms of action of this essential lipid transfer molecule, structure-based rationale for previously reported disease-causing mutations, and a means for rational drug design against cardiovascular disease and obesity. In contrast to the previously reported structure of lipovitellin, which has a funnel-like lipid-binding cavity, the lipid-binding site is encompassed in a ß-sandwich formed by 2 ß-sheets from the C-terminal domain of MTPα. The lipid-binding cavity of MTPα is large enough to accommodate a single lipid. PDI independently has a major role in oxidative protein folding in the endoplasmic reticulum. Comparison of the mechanism of MTPα binding by PDI with previously published structures gives insights into large protein substrate binding by PDI and suggests that the previous structures of human PDI represent the "substrate-bound" and "free" states rather than differences arising from redox state.


Asunto(s)
Proteínas Portadoras/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Conformación Proteica en Lámina beta
6.
Proteins ; 89(12): 1687-1699, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34218458

RESUMEN

The application of state-of-the-art deep-learning approaches to the protein modeling problem has expanded the "high-accuracy" category in CASP14 to encompass all targets. Building on the metrics used for high-accuracy assessment in previous CASPs, we evaluated the performance of all groups that submitted models for at least 10 targets across all difficulty classes, and judged the usefulness of those produced by AlphaFold2 (AF2) as molecular replacement search models with AMPLE. Driven by the qualitative diversity of the targets submitted to CASP, we also introduce DipDiff as a new measure for the improvement in backbone geometry provided by a model versus available templates. Although a large leap in high-accuracy is seen due to AF2, the second-best method in CASP14 out-performed the best in CASP13, illustrating the role of community-based benchmarking in the development and evolution of the protein structure prediction field.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas , Programas Informáticos , Biología Computacional/métodos , Biología Computacional/normas , Bases de Datos de Proteínas , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína
7.
Proteins ; 89(12): 1752-1769, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34387010

RESUMEN

The assessment of CASP models for utility in molecular replacement is a measure of their use in a valuable real-world application. In CASP7, the metric for molecular replacement assessment involved full likelihood-based molecular replacement searches; however, this restricted the assessable targets to crystal structures with only one copy of the target in the asymmetric unit, and to those where the search found the correct pose. In CASP10, full molecular replacement searches were replaced by likelihood-based rigid-body refinement of models superimposed on the target using the LGA algorithm, with the metric being the refined log-likelihood-gain (LLG) score. This enabled multi-copy targets and very poor models to be evaluated, but a significant further issue remained: the requirement of diffraction data for assessment. We introduce here the relative-expected-LLG (reLLG), which is independent of diffraction data. This reLLG is also independent of any crystal form, and can be calculated regardless of the source of the target, be it X-ray, NMR or cryo-EM. We calibrate the reLLG against the LLG for targets in CASP14, showing that it is a robust measure of both model and group ranking. Like the LLG, the reLLG shows that accurate coordinate error estimates add substantial value to predicted models. We find that refinement by CASP groups can often convert an inadequate initial model into a successful MR search model. Consistent with findings from others, we show that the AlphaFold2 models are sufficiently good, and reliably so, to surpass other current model generation strategies for attempting molecular replacement phasing.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas , Programas Informáticos , Algoritmos , Biología Computacional , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Proteínas/química , Proteínas/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 338-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664744

RESUMEN

AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.


Asunto(s)
Proteínas/química , Programas Informáticos , Conformación Proteica , Factores de Tiempo
9.
J Virol ; 88(1): 758-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155387

RESUMEN

The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle.


Asunto(s)
Biopolímeros/química , Virus Nipah/química , Fosfoproteínas/química , Cristalografía por Rayos X , Conformación Proteica
10.
Angew Chem Int Ed Engl ; 53(3): 824-8, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24302672

RESUMEN

Echinomycin is a nonribosomal depsipeptide natural product with a range of interesting bioactivities that make it an important target for drug discovery and development. It contains a thioacetal bridge, a unique chemical motif derived from the disulfide bond of its precursor antibiotic triostin A by the action of an S-adenosyl-L-methionine-dependent methyltransferase, Ecm18. The crystal structure of Ecm18 in complex with its reaction products S-adenosyl-L-homocysteine and echinomycin was determined at 1.50 Å resolution. Phasing was achieved using a new molecular replacement package called AMPLE, which automatically derives search models from structure predictions based on ab initio protein modelling. Structural analysis indicates that a combination of proximity effects, medium effects, and catalysis by strain drives the unique transformation of the disulfide bond into the thioacetal linkage.


Asunto(s)
Disulfuros/química , Equinomicina/biosíntesis , Catálisis , Cristalografía por Rayos X , Equinomicina/química , Homocisteína/biosíntesis , Homocisteína/química , Enlace de Hidrógeno , Metionina/química , Metionina/metabolismo , Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Quinoxalinas/química
11.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 11): 2194-201, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24189230

RESUMEN

AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular/métodos , Programas Informáticos , Tiorredoxinas/química , Sustitución de Aminoácidos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Cristalografía por Rayos X/métodos , Predicción , Modelos Moleculares , Pliegue de Proteína , Programas Informáticos/normas , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Tiorredoxinas/genética
12.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37162955

RESUMEN

The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and X-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as non-canonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.

13.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 806-819, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594303

RESUMEN

In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.


Asunto(s)
Cristalografía por Rayos X , Difracción de Rayos X
14.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259835

RESUMEN

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Cristalografía por Rayos X , Sustancias Macromoleculares
15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 12): 1622-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23151627

RESUMEN

Protein ab initio models predicted from sequence data alone can enable the elucidation of crystal structures by molecular replacement. However, the calculation of such ab initio models is typically computationally expensive. Here, a computational pipeline based on the clustering and truncation of cheaply obtained ab initio models for the preparation of structure ensembles is described. Clustering is used to select models and to quantitatively predict their local accuracy, allowing rational truncation of predicted inaccurate regions. The resulting ensembles, with or without rapidly added side chains, solved 43% of all test cases, with an 80% success rate for all-α proteins. A program implementing this approach, AMPLE, is included in the CCP4 suite of programs. It only requires the input of a FASTA sequence file and a diffraction data file. It carries out the modelling using locally installed Rosetta, creates search ensembles and automatically performs molecular replacement and model rebuilding.


Asunto(s)
Proteínas/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
16.
Acta Crystallogr D Struct Biol ; 78(Pt 12): 1412-1427, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458613

RESUMEN

Determination of protein structures typically entails building a model that satisfies the collected experimental observations and its deposition in the Protein Data Bank. Experimental limitations can lead to unavoidable uncertainties during the process of model building, which result in the introduction of errors into the deposited model. Many metrics are available for model validation, but most are limited to consideration of the physico-chemical aspects of the model or its match to the experimental data. The latest advances in the field of deep learning have enabled the increasingly accurate prediction of inter-residue distances, an advance which has played a pivotal role in the recent improvements observed in the field of protein ab initio modelling. Here, new validation methods are presented based on the use of these precise inter-residue distance predictions, which are compared with the distances observed in the protein model. Sequence-register errors are particularly clearly detected and the register shifts required for their correction can be reliably determined. The method is available in the ConKit package (https://www.conkit.org).


Asunto(s)
Aprendizaje Profundo , Bases de Datos de Proteínas
17.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 553-559, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503204

RESUMEN

Crystallographers have an array of search-model options for structure solution by molecular replacement (MR). The well established options of homologous experimental structures and regular secondary-structure elements or motifs are increasingly supplemented by computational modelling. Such modelling may be carried out locally or may use pre-calculated predictions retrieved from databases such as the EBI AlphaFold database. MrParse is a new pipeline to help to streamline the decision process in MR by consolidating bioinformatic predictions in one place. When reflection data are provided, MrParse can rank any experimental homologues found using eLLG, which indicates the likelihood that a given search model will work in MR. Inbuilt displays of predicted secondary structure, coiled-coil and transmembrane regions further inform the choice of MR protocol. MrParse can also identify and rank homologues in the EBI AlphaFold database, a function that will also interest other structural biologists and bioinformaticians.


Asunto(s)
Proteínas , Bases de Datos de Proteínas , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/química
18.
IUCrJ ; 9(Pt 1): 86-97, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35059213

RESUMEN

Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.

19.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048148

RESUMEN

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Asunto(s)
Nube Computacional , Programas Informáticos , Cristalografía por Rayos X , Sustancias Macromoleculares/química
20.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 313-23, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460449

RESUMEN

Molecular replacement is one of the key methods used to solve the problem of determining the phases of structure factors in protein structure solution from X-ray image diffraction data. Its success rate has been steadily improving with the development of improved software methods and the increasing number of structures available in the PDB for use as search models. Despite this, in cases where there is low sequence identity between the target-structure sequence and that of its set of possible homologues it can be a difficult and time-consuming chore to isolate and prepare the best search model for molecular replacement. MrBUMP and BALBES are two recent developments from CCP4 that have been designed to automate and speed up the process of determining and preparing the best search models and putting them through molecular replacement. Their intention is to provide the user with a broad set of results using many search models and to highlight the best of these for further processing. An overview of both programs is presented along with a description of how best to use them, citing case studies and the results of large-scale testing of the software.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/análisis , Diseño de Software , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA