Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Chem Chem Phys ; 17(5): 2996-9, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25557615

RESUMEN

The last decade has seen artificial blood vessels composed of natural polymer nanofibers grafted into human bodies to facilitate the recovery of damaged blood vessels. However, electrospun nanofibers (ENs) of biocompatible materials such as chitosan (CTS) suffer from poor mechanical properties. This study describes the design and fabrication of artificial blood vessels composed of a blend of CTS and PCL ENs and coated with PCL strands using rapid prototyping technology. The resulting tubular vessels exhibited excellent mechanical properties and showed that this process may be useful for vascular reconstruction.


Asunto(s)
Órganos Artificiales , Impresión Tridimensional , Materiales Biocompatibles/química , Vasos Sanguíneos/anatomía & histología , Vasos Sanguíneos/fisiología , Quitosano/química , Humanos , Nanofibras/química , Poliésteres/química , Ingeniería de Tejidos , Andamios del Tejido
2.
Sensors (Basel) ; 15(8): 18851-64, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26263995

RESUMEN

This paper presents the development of a piezoelectric artificial cochlea (PAC) device capable of analyzing vibratory signal inputs and converting them into electrical signal outputs without an external power source by mimicking the function of human cochlea within an audible frequency range. The PAC consists of an artificial basilar membrane (ABM) part and an implantable packaged part. The packaged part provides a liquid environment through which incoming vibrations are transmitted to the membrane part. The membrane part responds to the transmitted signal, and the local area of the ABM part vibrates differently depending on its local resonant frequency. The membrane was designed to have a logarithmically varying width from 0.97 mm to 8.0 mm along the 28 mm length. By incorporating a micro-actuator in an experimental platform for the package part that mimics the function of a stapes bone in the middle ear, we created a similar experimental environment to cochlea where the human basilar membrane vibrates. The mechanical and electrical responses of fabricated PAC were measured with a laser Doppler vibrometer and a data acquisition system, and were compared with simulation results. Finally, the fabricated PAC in a biocompatible package was developed and its mechanical and electrical characteristics were measured. The experimental results shows successful frequency separation of incoming mechanical signal from micro-actuator into frequency bandwidth within the 0.4 kHz-5 kHz range.


Asunto(s)
Materiales Biocompatibles/química , Implantes Cocleares , Electricidad , Fenómenos Mecánicos , Embalaje de Productos , Diseño de Prótesis , Análisis de Elementos Finitos , Humanos , Procesamiento de Señales Asistido por Computador , Vibración
3.
Nanotechnology ; 24(18): 185401, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575254

RESUMEN

We have successfully investigated the thermal conductivity (κ) of single-crystalline bismuth nanowires (BiNWs) with [110] growth direction, via a straightforward and powerful four-point-probe 3-ω technique in the temperature range 10-280 K. The BiNWs, which are well known as the most effective material for thermoelectric (TE) device applications, were synthesized by compressive thermal stress on a SiO2/Si substrate at 250-270 °C for 10 h. To understand the thermal transport mechanism of BiNWs, we present three kinds of experimental technique as follows, (i) a manipulation of a single BiNW by an Omni-probe in a focused ion beam (FIB), (ii) a suspended bridge structure integrating a four-point-probe chip by micro-fabrication to minimize the thermal loss to the substrate, and (iii) a simple 3-ω technique system setup. We found that the thermal transport of BiNWs is highly affected by boundary scattering of both phonons and electrons as the dominant heat carriers. The thermal conductivity of a single BiNW (d ~ 123 nm) was estimated to be ~2.9 W m(-1) K(-1) at 280 K, implying lower values compared to the thermal conductivity of the bulk (~11 W m(-1) K(-1) at 280 K). It was noted that this reduction in the thermal conductivity of the BiNWs could be due to strongly enhanced phonon-boundary scattering at the surface of the BiNWs. Furthermore, we present temperature-dependent (10-280 K) thermal conductivity of the BiNWs using the 3-ω technique.

4.
Sensors (Basel) ; 14(1): 117-28, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24361926

RESUMEN

In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz-13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters.


Asunto(s)
Acústica/instrumentación , Membrana Basilar , Membranas Artificiales , Modelos Teóricos
5.
Langmuir ; 28(27): 10183-91, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22731870

RESUMEN

Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia.

6.
Biotechnol Lett ; 34(7): 1375-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22447098

RESUMEN

The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects.


Asunto(s)
Médula Ósea , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Células Madre Mesenquimatosas/fisiología , Poliésteres , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Huesos/fisiología , Conejos
7.
Int J Biol Macromol ; 205: 520-529, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35217077

RESUMEN

Bioprinting is an emerging technology for manufacturing cell-laden three-dimensional (3D) scaffolds, which are used to fabricate complex 3D constructs and provide specific microenvironments for supporting cell growth and differentiation. The development of bioinks with appropriate printability and specific bioactivities is crucial for bioprinting and tissue engineering applications, including bone tissue regeneration. Therefore, to produce functional bioinks for osteoblast printing and bone tissue formation, we formulated various nanocomposite hydrogel-based bioinks using natural and biocompatible biomaterials (i.e., alginate, tempo-oxidized cellulose nanofibrils (TOCNF), and polydopamine nanoparticles (PDANPs)). Rheological studies and printability tests revealed that bioinks containing 1.5% alginate and 1.5% TOCNF in the presence or absence of PDANP (0.5%) are suitable for 3D printing. Furthermore, in vitro studies of 3D-printed osteoblast-laden scaffolds indicated that the 0.5% PDANP-incorporated bioink induced significant osteogenesis. Overall, the bioink consisting of alginate, TOCNF, and PDANPs exhibited excellent printability and bioactivity (i.e., osteogenesis).


Asunto(s)
Bioimpresión , Nanopartículas , Alginatos , Bioimpresión/métodos , Huesos , Celulosa , Indoles , Osteogénesis , Polímeros , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
8.
Bioprocess Biosyst Eng ; 34(4): 505-13, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21170553

RESUMEN

For tissue engineering and regeneration, a porous scaffold with interconnected networks is needed to guide cell attachment and growth/ingrowth in three-dimensional (3D) structure. Using a rapid prototyping (RP) technique, we designed and fabricated 3D plotting system and three types of scaffolds: those from polycaprolactone (PCL), those from PCL and hydroxyapatite (HA), and those from PCL/HA and with a shifted pattern structure (PCL/HA/SP scaffold). Shifted pattern structure was fabricated to increase the cell attachment/adhesion. The PCL/HA/SP scaffold had a lower compressive modulus than PCL and PCL/HA scaffold. However, it has a better cell attachment than the scaffolds without a shifted pattern. MTT assay and alkaline phosphatase activity results for the PCL/HA/SP scaffolds were significantly enhanced compared to the results for the PCL and PCL/HA scaffolds. According to their degree of cell proliferation/differentiation, the scaffolds were in the following order: PCL/HA/SP > PCL/HA > PCL. These 3D scaffolds will be applicable for tissue engineering based on unique plotting system.


Asunto(s)
Huesos/metabolismo , Durapatita/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Biotecnología/métodos , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Diseño de Equipo , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo/métodos , Porosidad , Andamios del Tejido , Tomografía Computarizada por Rayos X/métodos , Microtomografía por Rayos X/métodos
9.
Colloids Surf B Biointerfaces ; 199: 111528, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33385823

RESUMEN

Three-dimensional (3D) bioprinting is a free-form fabrication technique enabling fine feature control for tissue engineering applications. Especially, 3D scaffolds capable of supporting cell attachment, proliferation, and osteogenic differentiation are a prerequisite for bone tissue regeneration. Herein, we elaborated this approach to produce a 3D polycaprolactone (PCL) scaffold with long-term osteogenic activity. Specifically, we coated polydopamine (PDA) on 3D PCL scaffolds, subsequently deposited hydroxyapatite (HA) nanoparticles via biomimetic mineralization, and finally immobilized bone morphogenetic protein-2 (BMP-2). Material properties were characterized and compared with various 3D scaffolds, including PCL, PDA-coated PCL (PCL/PDA), and PDA-coated and HA-deposited PCL (PCL/PDA/HA). In vitro cell culture studies with osteoblasts revealed that the PCL/PDA/HA scaffolds immobilized with BMP-2 showed long-term retention of BMP-2 (for up to 21 days) and significantly increased osteoblast proliferation and osteogenic differentiation, as evidenced by metabolic activity, alkaline phosphatase activity, and calcium deposition. We believe that this multifunctional osteogenic 3D scaffold will be useful for bone tissue engineering applications.


Asunto(s)
Biomineralización , Osteogénesis , Huesos , Diferenciación Celular , Indoles , Poliésteres , Polímeros , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
10.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807639

RESUMEN

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s-1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.

11.
Front Bioeng Biotechnol ; 9: 693849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336805

RESUMEN

Cochlear implants (CIs) have become the standard treatment for severe-to-profound sensorineural hearing loss. Conventional CIs have some challenges, such as the use of extracorporeal devices, and high power consumption for frequency analysis. To overcome these, artificial basilar membranes (ABMs) made of piezoelectric materials have been studied. This study aimed to verify the conceptual idea of a totally implantable ABM system. A prototype of the totally implantable system composed of the ABM developed in previous research, an electronic module (EM) for the amplification of electrical output from the ABM, and electrode was developed. We investigated the feasibility of the ABM system and obtained meaningful auditory brainstem responses of deafened guinea pigs by implanting the electrode of the ABM system. Also, an optimal method of coupling the ABM system to the human ossicle for transducing sound waves into electrical signals using the middle ear vibration was studied and the electrical signal output according to the sound stimuli was measured successfully. Although the overall power output from the ABM system is still less than the conventional CIs and further improvements to the ABM system are needed, we found a possibility of the developed ABM system as a totally implantable CIs in the future.

12.
Colloids Surf B Biointerfaces ; 205: 111919, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126550

RESUMEN

Three-dimensional bio-plotted scaffolds constructed from encapsulated biomaterials or so-called "bio-inks" have received much attention for tissue regeneration applications, as advances in this technology have enabled more precise control over the scaffold structure. As a base material of bio-ink, sodium alginate (SA) has been used extensively because it provides suitable biocompatibility and printability in terms of creating a biomimetic environment for cell growth, even though it has limited cell-binding moiety and relatively weak mechanical properties. To improve the mechanical and biological properties of SA, herein, we introduce a strategy using hydroxyapatite (HA) nanoparticles and a core/sheath plotting (CSP) process. By characterizing the rheological and chemical properties and printability of SA and SA/HA-blended inks, we successfully fabricated bio-scaffolds using CSP. In particular, the mechanical properties of the scaffold were enhanced with increasing concentrations of HA particles and SA hydrogel. Specifically, HA particles blended with the SA hydrogel of core strands enhanced the biological properties of the scaffold by supporting the sheath part of the strand encapsulating osteoblast-like cells. Based on these results, the proposed scaffold design shows great promise for bone-tissue regeneration and engineering applications.


Asunto(s)
Alginatos , Hidrogeles , Materiales Biocompatibles/farmacología , Durapatita , Tinta , Ingeniería de Tejidos , Andamios del Tejido
13.
J Nanosci Nanotechnol ; 10(8): 5020-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21125845

RESUMEN

Nanoscale patterning of gold layers on GaAs substrate is demonstrated using a combination of soft lithographic molding and galvanic displacement deposition. First, an electroless deposition method has been developed to plate gold on GaAs with ease and cost-effectiveness. The electroless metallization process is performed by dipping the GaAs substrates into a gold salt solution without any reducing agents or additives. The deposition proceeds via galvanic displacement in which gold ions in the aqueous solution are reduced by electrons arising from the GaAs substrate itself. The deposition rate, surface morphology and adhesion property can be modulated by the plating parameters such as the choice of acids and the immersion time. Second, soft lithographic patterning of nanodots, nanorings, and nanolines are demonstrated on GaAs substrates with hard-polydimethylsiloxane (h-PDMS) mold and plasma etching. This method can be easily applied to the metallization and nanopatterning of gold on GaAs surfaces.

14.
Materials (Basel) ; 13(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785023

RESUMEN

Recently, many research groups have investigated three-dimensional (3D) bioprinting techniques for tissue engineering and regenerative medicine. The bio-ink used in 3D bioprinting is typically a combination of synthetic and natural materials. In this study, we prepared bio-ink containing porcine skin powder (PSP) to determine rheological properties, biocompatibility, and extracellular matrix (ECM) formation in cells in PSP-ink after 3D printing. PSP was extracted without cells by mechanical, enzymatic, and chemical treatments of porcine dermis tissue. Our developed PSP-containing bio-ink showed enhanced printability and biocompatibility. To identify whether the bio-ink was printable, the viscosity of bio-ink and alginate hydrogel was analyzed with different concentration of PSP. As the PSP concentration increased, viscosity also increased. To assess the biocompatibility of the PSP-containing bio-ink, cells mixed with bio-ink printed structures were measured using a live/dead assay and WST-1 assay. Nearly no dead cells were observed in the structure containing 10 mg/mL PSP-ink, indicating that the amounts of PSP-ink used were nontoxic. In conclusion, the proposed skin dermis decellularized bio-ink is a candidate for 3D bioprinting.

15.
Biofabrication ; 12(3): 035018, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32252038

RESUMEN

Although three-dimensional (3D) bioprinting technology is rapidly developing, the design strategies for biocompatible 3D-printable bioinks remain a challenge. In this study, we developed a machine learning-based method to design 3D-printable bioink using a model system with naturally derived biomaterials. First, we demonstrated that atelocollagen (AC) has desirable physical properties for printing compared to native collagen (NC). AC gel exhibited weakly elastic and temperature-responsive reversible behavior forming a soft cream-like structure with low yield stress, whereas NC gel showed highly crosslinked and temperature-responsive irreversible behavior resulting in brittleness and high yield stress. Next, we discovered a universal relationship between the mechanical properties of ink and printability that is supported by machine learning: a high elastic modulus improves shape fidelity and extrusion is possible below the critical yield stress; this is supported by machine learning. Based on this relationship, we derived various formulations of naturally derived bioinks that provide high shape fidelity using multiple regression analysis. Finally, we produced a 3D construct of a cell-laden hydrogel with a framework of high shape fidelity bioink, confirming that cells are highly viable and proliferative in the 3D constructs.


Asunto(s)
Bioimpresión , Módulo de Elasticidad , Tinta , Aprendizaje Automático , Impresión Tridimensional , Estrés Mecánico , Animales , Bovinos , Colágeno/química , Humanos , Hidrogeles/química , Ratas , Reología
16.
Polymers (Basel) ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322291

RESUMEN

Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural-synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.

17.
Macromol Biosci ; 20(12): e2000256, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33164317

RESUMEN

3D printed scaffolds composed of gelatin and ß-tri-calcium phosphate (ß-TCP) as a biomimetic bone material are fabricated, thereby providing an environment appropriate for bone regeneration. The Ca2+ in ß-TCP and COO- in gelatin form a stable electrostatic interaction, and the composite scaffold shows suitable rheological properties for bioprinting. The gelatin/ß-TCP scaffold is crosslinked with glutaraldehyde vapor and unreacted aldehyde groups which can cause toxicity to cells is removed by a glycine washing. The stable binding of the hydrogel is revealed as a result of FTIR and degradation rate. It is confirmed that the composite scaffold has compressive strength similar to that of cancellous bone and 60 wt% ß-TCP groups containing 40 wt% gelatin have good cellular activity with preosteoblasts. Also, in the animal experiments, the gelatin/ß-TCP scaffold confirms to induce bone formation without any inflammatory responses. This study suggests that these fabricated scaffolds can serve as a potential bone substitute for bone regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos , Andamios del Tejido/química , Células 3T3 , Animales , Bioimpresión , Regeneración Ósea/fisiología , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Gelatina/química , Gelatina/farmacología , Humanos , Ratones , Osteoblastos/efectos de los fármacos , Osteogénesis/fisiología , Impresión Tridimensional
18.
J Tissue Eng Regen Med ; 12(2): 516-528, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28763610

RESUMEN

Recently, computer-designed three-dimensional (3D) printing techniques have emerged as an active research area with almost unlimited possibilities. In this study, we used a computer-designed 3D scaffold to drive new bone formation in a bone defect. Poly-L-lactide (PLLA) and bioactive ß-tricalcium phosphate (TCP) were simply mixed to prepare ink. PLLA + TCP showed good printability from the micronozzle and solidification within few seconds, indicating that it was indeed printable ink for layer-by-layer printing. In the images, TCP on the surface of (and/or inside) PLLA in the printed PLLA + TCP scaffold looked dispersed. MG-63 cells (human osteoblastoma) adhered to and proliferated well on the printed PLLA + TCP scaffold. To assess new bone formation in vivo, the printed PLLA + TCP scaffold was implanted into a full-thickness cranial bone defect in rats. The new bone formation was monitored by microcomputed tomography and histological analysis of the in vivo PLLA + TCP scaffold with or without MG-63 cells. The bone defect was gradually spontaneously replaced with new bone tissues when we used both bioactive TCP and MG-63 cells in the PLLA scaffold. Bone formation driven by the PLLA + TCP30 scaffold with MG-63 cells was significantly greater than that in other experimental groups. Furthermore, the PLLA + TCP scaffold gradually degraded and matched well the extent of the gradual new bone formation on microcomputed tomography. In conclusion, the printed PLLA + TCP scaffold effectively supports new bone formation in a cranial bone defect.


Asunto(s)
Regeneración Ósea/fisiología , Impresión Tridimensional , Cráneo/patología , Andamios del Tejido/química , Animales , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Fluorescencia , Humanos , Osteogénesis , Poliésteres/química , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Ingeniería de Tejidos , Microtomografía por Rayos X
19.
Organogenesis ; 14(1): 1-12, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29359998

RESUMEN

Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.


Asunto(s)
Hepatocitos/citología , Hígado/citología , Impresión Tridimensional , Alginatos/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Femenino , Sangre Fetal/citología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Transgénicos , Especificidad de Órganos
20.
Nanoscale ; 10(33): 15447-15453, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30091763

RESUMEN

In this study, we designed scaffolds coated with gold nanoparticles (GNPs) grown on a polydopamine (PDA) coating of a three-dimensional (3D) printed polycaprolactone (PCL) scaffold. Our results demonstrated that the scaffolds developed here may represent an innovative paradigm in bone tissue engineering by inducing osteogenesis as a means of remodeling and healing bone defects.


Asunto(s)
Indoles/química , Células Madre Mesenquimatosas/citología , Nanopartículas del Metal/química , Osteogénesis , Polímeros/química , Ingeniería de Tejidos , Andamios del Tejido , Tejido Adiposo/citología , Diferenciación Celular , Células Cultivadas , Oro , Humanos , Poliésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA