RESUMEN
The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.
Asunto(s)
ADN Mitocondrial , Mitocondrias , Fosforilación Oxidativa , Biosíntesis de Proteínas , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , AnimalesRESUMEN
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Asunto(s)
ADN Mitocondrial , Transmisión Vertical de Enfermedad Infecciosa , Animales , Ratones , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Células Germinativas/metabolismo , Mutación , Autofagia/genética , Mamíferos/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.
Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos , Bases de Datos de Proteínas , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Mitocondriales/genética , Interferencia de ARN , Transducción de Señal , Transfección , Ubiquinona/metabolismoRESUMEN
Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the â¼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the â¼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.
Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Alelos , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/genética , Femenino , Fibroblastos/patología , Heterogeneidad Genética , Humanos , Lactante , Masculino , Mitocondrias/genética , Fenotipo , Alineación de SecuenciaRESUMEN
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.
Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Given the rapidly decreasing cost and increasing speed and accessibility of massively parallel technologies, the integration of comprehensive genomic, transcriptomic, and proteomic data into a "multi-omics" diagnostic pipeline is within reach. Even though genomic analysis has the capability to reveal all possible perturbations in our genetic code, analysis typically reaches a diagnosis in just 35% of cases, with a diagnostic gap arising due to limitations in prioritization and interpretation of detected variants. Here we review the utility of complementing genetic data with transcriptomic data and give a perspective for the introduction of proteomics into the diagnostic pipeline. Together these methodologies enable comprehensive capture of the functional consequence of variants, unobtainable by the analysis of each methodology in isolation. This facilitates functional annotation and reprioritization of candidate genes and variants-a promising approach to shed light on the underlying molecular cause of a patient's disease, increasing diagnostic rate, and allowing actionability in clinical practice.
Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Biología de Sistemas/métodos , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Metabolómica/métodos , Proteómica/métodos , Biología de Sistemas/tendencias , Transcriptoma/genéticaRESUMEN
Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.
Asunto(s)
Hidroliasas/deficiencia , Enfermedades Neurodegenerativas/genética , Preescolar , Simulación por Computador , Femenino , Fiebre/complicaciones , Fiebre/metabolismo , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Hidroliasas/genética , Lactante , Cinética , Lentivirus , Masculino , Mitocondrias/metabolismo , Mutación , NAD/análogos & derivados , NAD/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/metabolismo , Cultivo Primario de Células , Secuenciación Completa del GenomaRESUMEN
Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial ß-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement.
Asunto(s)
Alelos , Arritmias Cardíacas/genética , Cardiomiopatías/genética , Mutación , Arritmias Cardíacas/diagnóstico , Cardiomiopatías/diagnóstico , Preescolar , Exoma , Femenino , Humanos , Lactante , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , LinajeRESUMEN
To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder.
Asunto(s)
Proteínas Portadoras/genética , Enfermedades Metabólicas/genética , Mutación , NAD/análogos & derivados , Enfermedades del Sistema Nervioso/genética , Racemasas y Epimerasas/genética , Proteínas Portadoras/metabolismo , Línea Celular , Preescolar , Resultado Fatal , Femenino , Fibroblastos , Humanos , Lactante , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , NAD/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuroimagen , Anomalías Cutáneas/genética , Anomalías Cutáneas/patologíaRESUMEN
SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.
Asunto(s)
Ataxia/genética , Autofagia/genética , Distonía/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Proteína Sequestosoma-1/deficiencia , Parálisis Supranuclear Progresiva/genética , Adolescente , Adulto , Edad de Inicio , Ataxia/complicaciones , Autofagosomas/metabolismo , Autofagosomas/patología , Niño , Trastornos del Conocimiento/genética , Disartria/complicaciones , Disartria/genética , Distonía/complicaciones , Femenino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/genética , Enfermedades Neurodegenerativas/complicaciones , Linaje , Fenotipo , ARN Mensajero/análisis , Proteína Sequestosoma-1/genética , Parálisis Supranuclear Progresiva/complicaciones , Adulto JovenRESUMEN
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized.
Asunto(s)
Muerte Súbita Cardíaca/etiología , Pirofosfatasa Inorgánica/deficiencia , Pirofosfatasa Inorgánica/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Mutación Missense/genética , Acidosis Láctica/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Arritmias Cardíacas/genética , Cardiomiopatías/enzimología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Niño , Preescolar , Muerte Súbita Cardíaca/patología , Etanol/efectos adversos , Exoma/genética , Femenino , Fibroblastos/citología , Fibroblastos/patología , Fibrosis/enzimología , Fibrosis/genética , Fibrosis/patología , Humanos , Lactante , Recién Nacido , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/metabolismo , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Linaje , Fenotipo , Convulsiones , Adulto JovenRESUMEN
Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.
Asunto(s)
Enfermedades Mitocondriales/genética , Modelos Moleculares , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Exoma/genética , Mutación del Sistema de Lectura/genética , Humanos , Enfermedades Mitocondriales/patología , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , ARNt Metiltransferasas/químicaRESUMEN
Acute liver failure (ALF) in infancy and childhood is a life-threatening emergency. Few conditions are known to cause recurrent acute liver failure (RALF), and in about 50% of cases, the underlying molecular cause remains unresolved. Exome sequencing in five unrelated individuals with fever-dependent RALF revealed biallelic mutations in NBAS. Subsequent Sanger sequencing of NBAS in 15 additional unrelated individuals with RALF or ALF identified compound heterozygous mutations in an additional six individuals from five families. Immunoblot analysis of mutant fibroblasts showed reduced protein levels of NBAS and its proposed interaction partner p31, both involved in retrograde transport between endoplasmic reticulum and Golgi. We recommend NBAS analysis in individuals with acute infantile liver failure, especially if triggered by fever.
Asunto(s)
Fallo Hepático Agudo/genética , Proteínas de Neoplasias/genética , Secuencia de Bases , Transporte Biológico/genética , Exoma/genética , Fibroblastos/metabolismo , Frecuencia de los Genes , Alemania , Humanos , Immunoblotting , Lactante , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Linaje , Recurrencia , Análisis de Secuencia de ADNRESUMEN
Exome wide sequencing techniques have revolutionized molecular diagnostics in patients with suspected inborn errors of metabolism or neuromuscular disorders. However, the diagnostic yield of 25-60% still leaves a large fraction of individuals without a diagnosis. This indicates a causative role for non-exonic regulatory variants not covered by whole exome sequencing. Here we review how systematic RNA-sequencing analysis (RNA-seq, "transcriptomics") lead to a molecular diagnosis in 10-35% of patients in whom whole exome sequencing failed to do so. Importantly, RNA-sequencing based discoveries cannot only guide molecular diagnosis but might also unravel therapeutic intervention points such as antisense oligonucleotide treatment for splicing defects as recently reported for spinal muscular atrophy.
Asunto(s)
Genómica/métodos , Errores Innatos del Metabolismo/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Pruebas Genéticas , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Secuenciación del ExomaRESUMEN
Thioredoxin 2 (TXN2; also known as Trx2) is a small mitochondrial redox protein essential for the control of mitochondrial reactive oxygen species homeostasis, apoptosis regulation and cell viability. Exome sequencing in a 16-year-old adolescent suffering from an infantile-onset neurodegenerative disorder with severe cerebellar atrophy, epilepsy, dystonia, optic atrophy, and peripheral neuropathy, uncovered a homozygous stop mutation in TXN2. Analysis of patient-derived fibroblasts demonstrated absence of TXN2 protein, increased reactive oxygen species levels, impaired oxidative stress defence and oxidative phosphorylation dysfunction. Reconstitution of TXN2 expression restored all these parameters, indicating the causal role of TXN2 mutation in disease development. Supplementation with antioxidants effectively suppressed cellular reactive oxygen species production, improved cell viability and mitigated clinical symptoms during short-term follow-up. In conclusion, our report on a patient with TXN2 deficiency suggests an important role of reactive oxygen species homeostasis for human neuronal maintenance and energy metabolism.
Asunto(s)
Homeostasis/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Niño , Humanos , Masculino , Mitocondrias/genética , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/genética , Oxidación-Reducción , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/genéticaRESUMEN
BACKGROUND & AIMS: Next generation sequencing approaches have tremendously improved the diagnosis of rare genetic diseases. It may however be faced with difficult clinical interpretation of variants. Inherited enzymatic diseases provide an invaluable possibility to evaluate the function of the defective enzyme in human cell biology. This is the case for respiratory complex III, which has 11 structural subunits and requires several assembly factors. An important role of complex III in liver function is suggested by its frequent impairment in human cases of genetic complex III defects. METHODS: We report the case of a child with complex III defect and acute liver dysfunction with lactic acidosis, hypoglycemia, and hyperammonemia. Mitochondrial activities were assessed in liver and fibroblasts using spectrophotometric assays. Genetic analysis was done by exome followed by Sanger sequencing. Functional complementation of defective fibroblasts was performed using lentiviral transduction followed by enzymatic analyses and expression assays. RESULTS: Homozygous, truncating, mutations in LYRM7 and MTO1, two genes encoding essential mitochondrial proteins were found. Functional complementation of the complex III defect in fibroblasts demonstrated the causal role of LYRM7 mutations. Comparison of the patient's clinical history to previously reported patients with complex III defect due to nuclear DNA mutations, some actually followed by us, showed striking similarities allowing us to propose common pathophysiology. CONCLUSIONS: Profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting leading to severe lactic acidosis, hypoglycemia, and hyperammonemia, potentially leading to irreversible brain damage. LAY SUMMARY: The diagnosis of rare genetic disease has been tremendously accelerated by the development of high throughput sequencing technology. In this paper we report the investigations that have led to identify LYRM7 mutations causing severe hepatic defect of respiratory complex III. Based on the comparison of the patient's phenotype with other cases of complex III defect, we propose that profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting.
Asunto(s)
Ayuno , Adaptación Fisiológica , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Hígado , Proteínas Mitocondriales , RespiraciónRESUMEN
We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.
Asunto(s)
Anemia Macrocítica/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Adolescente , Animales , Niño , Eritropoyesis/genética , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mitocondriales/genética , Mutación , Pez Cebra/genéticaRESUMEN
Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of proteins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demonstrate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately 400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA maintenance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy.
Asunto(s)
Predisposición Genética a la Enfermedad , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Edad de Inicio , Niño , Preescolar , Cromosomas Humanos Par 6/genética , ADN Complementario/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Recesivos/genética , Células HEK293 , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/epidemiología , Músculo Esquelético/patología , Proteínas Mutantes/metabolismo , Fosforilación Oxidativa , Linaje , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Síndrome , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.
Asunto(s)
Mitocondrias , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Mitocondrias/metabolismo , Fosforilación , Espectrometría de Masas , Proteínas Mitocondriales/metabolismoRESUMEN
The oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.