Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(21): 6667-6680, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37847527

RESUMEN

Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.


Asunto(s)
Receptores Odorantes , Animales , Ratones , Receptores Acoplados a Proteínas G/química , Aminas , Sitios de Unión , Ligandos
2.
Eur J Nutr ; 54(5): 845-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25204719

RESUMEN

PURPOSE: The hypothesis was tested that coffee types differing in content of major constituents also differ with regard to cardiometabolic effects. METHODS: Overweight persons (n = 118) were randomized to consume a dark roast [rich in N-methylpyridinium (NMP)] or medium roast (rich in caffeoylquinic acids, trigonelline) coffee blend for 3 months, after a washout period of 4 weeks. Before and after the intervention period, body weight and 15 further general and biochemical parameters were determined. RESULTS: Participants consumed an average of 4-5 cups per day. Mean body weight, body mass index and waist circumference did not change during the coffee consumption phase in either of the study groups. Systolic blood pressure decreased in the dark roast coffee group only (p < 0.05). High-density lipoprotein cholesterol levels increased in the medium roast coffee group only, and triglyceride levels increased in the dark roast coffee group only. Glucoregulation and insulin levels were not affected, although there was a small increase of hemoglobin A1c values in both groups. An increase of adiponectin levels occurred in the medium roast coffee group only and was negatively associated with NMP concentrations. Differences did not remain statistically significant after correction for multiple testing. CONCLUSIONS: Medium and dark roast coffee blends exert small but possibly relevant different cardiometabolic effects. Further studies of health outcomes in relation to coffee constituents seem warranted.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Café/química , Sobrepeso/metabolismo , Adiponectina/sangre , Adolescente , Adulto , Anciano , Alcaloides/administración & dosificación , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Índice de Masa Corporal , Peso Corporal , Proteína C-Reactiva , Sistema Cardiovascular/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Ayuno , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Modelos Lineales , Masculino , Persona de Mediana Edad , Osteopontina/sangre , Estudios Prospectivos , Compuestos de Piridinio/administración & dosificación , Compuestos de Piridinio/sangre , Ácido Quínico/administración & dosificación , Ácido Quínico/análogos & derivados , Circunferencia de la Cintura , Pérdida de Peso/efectos de los fármacos , Adulto Joven
3.
Food Chem ; 446: 138884, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432139

RESUMEN

Arabica coffee contains the bitter-tasting diterpene glycoside mozambioside, which degrades during coffee roasting, leading to yet unknown structurally related degradation products with possibly similar bitter-receptor-activating properties. The study aimed at the generation, isolation, and structure elucidation of individual pyrolysis products of mozambioside and characterization of bitter receptor activation by in vitro analysis in HEK 293T-Gα16gust44 cells. The new compounds 17-O-ß-d-glucosyl-11-hydroxycafestol-2-on, 11-O-ß-d-glucosyl-16-desoxycafestol-2-on, 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on were isolated from pyrolyzed mozambioside by HPLC and identified by NMR and UHPLC-ToF-MS. Roasting products 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on had lower bitter receptor activation thresholds compared to mozambioside. Molecular docking simulations revealed the binding modes of the compounds 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on and their aglycone 11-hydroxycafestol-2-on in the two cognate receptors TAS2R43 and TAS2R46. The newly discovered roasting products 17-O-ß-d-glucosyl-11-hydroxycafestol-2-on, 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on were detected in authentic roast coffee brew by UHPLC-ToF-MS and could contribute to coffee's bitter taste impression.


Asunto(s)
Glicósidos , Gusto , Simulación del Acoplamiento Molecular , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética
4.
Mol Nutr Food Res ; 68(1): e2300396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37953385

RESUMEN

SCOPE: For most substances, there are several routes of excretion from the human body. This study focuses on urinary excretion of dietary odorants and compares the results with previously obtained results on excretion into milk. METHODS AND RESULTS: Lactating mothers (n = 18) are given a standardized curry dish and donate urine samples before and after the intervention. The odorants 1,8-cineole, linalool, cuminaldehyde, cinnamaldehyde, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, sotolone, eugenol, vanillin, and γ-nonalactone are quantitatively analyzed. A significant transition of up to 6 µg g-1 creatinine into urine is observed for linalool, 1,8-cineole, and eugenol. Maximum concentrations are reached 1.5 h after the intervention for 1,8-cineole and eugenol as well as 2.5 h after the intervention for linalool. Comparison with previous results reveals that the excretion pattern of odorants into urine is divergent from the one into milk. In a second intervention study (n = 6), excretion of phase II metabolites into urine is studied using ß-glucuronidase treatment. Linalool and eugenol concentrations are 23 and 77 times higher after treatment than before treatment with ß-glucuronidase, respectively. CONCLUSION: The study demonstrates transition of linalool, 1,8-cineole, and eugenol from the diet into urine and excretion of glucuronides in the case of linalool, eugenol, and vanillin.


Asunto(s)
Eugenol , Lactancia , Femenino , Humanos , Eucaliptol , Glucuronidasa
5.
Mol Nutr Food Res ; 68(8): e2300831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602198

RESUMEN

SCOPE: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with ß-glucuronidase. CONCLUSION: The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.


Asunto(s)
Acroleína/análogos & derivados , Monoterpenos Acíclicos , Benzaldehídos , Eugenol , Leche Humana , Odorantes , Humanos , Leche Humana/química , Femenino , Odorantes/análisis , Eugenol/orina , Eugenol/metabolismo , Eugenol/análogos & derivados , Adulto , Benzaldehídos/orina , Monoterpenos Acíclicos/orina , Glucuronidasa/metabolismo , Lactancia , Acroleína/orina , Acroleína/metabolismo , Monoterpenos/orina
6.
Anal Chem ; 85(5): 2961-9, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23379726

RESUMEN

N-(1-Methyl-4-oxoimidazolidin-2-ylidene) α-amino acids were recently identified in roasted meat as so far unknown advanced glycation end products (AGEs) of creatinine. For the first time, this paper reports on the preparation of (13)C-labeled twin molecules of six N-(1-methyl-4-oxoimidazolidin-2-ylidene) α-amino acids and the development of a stable isotope dilution analysis (SIDA) for their simultaneous quantitation in meat, plasma, and urine samples by means of HPLC-MS/MS. Method validation demonstrated good precision (<14% RSD) and accuracy (97-118%) for all analytes and a lower limit of quantitation of 1 pg injected onto the column. The SIDA was applied to monitor plasma appearance and urinary excretion of these AGEs in type 2 diabetes mellitus patients (DM, n = 7) and healthy controls (n = 10) prior to and after ingestion of a bolus of processed beef meat. Interestingly, the basal concentration of N-(1-methyl-4-oxoimidazolidin-2-ylidene) aminopropionic acid was elevated in plasma and urine of DM patients compared to healthy individuals. Further, ingestion of processed meat led to a significantly higher concentration of this AGE in biofluids from DM patients when compared to healthy controls. These findings suggest a favored in vivo formation, as demonstrated by physiological model incubations of creatinine and carbohydrates (37 °C, pH 7.4), or a more efficient dietary up-take of N-(1-methyl-4-oxoimidazolidin-2-ylidene) α-amino acids in hyperglycemic diabetes patients.


Asunto(s)
Análisis Químico de la Sangre/métodos , Creatinina/sangre , Creatinina/orina , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/orina , Productos Finales de Glicación Avanzada/metabolismo , Urinálisis/métodos , Estudios de Casos y Controles , Creatinina/metabolismo , Dieta , Humanos , Isótopos , Carne/análisis
7.
Anal Bioanal Chem ; 405(26): 8487-503, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23982107

RESUMEN

Habitual consumption of medium amounts of coffee over the whole life-span is hypothesized to reduce the risk to develop diabetes type 2 (DM2) and Alzheimer's disease (AD). To identify putative bioactive coffee-derived metabolites, first, pooled urine from coffee drinkers and non-coffee drinkers were screened by UPLC-HDMS. After statistical data analysis, trigonelline, dimethylxanthines and monomethylxanthines, and ferulic acid conjugates were identified as the major metabolites found after coffee consumption. For quantitative analysis of these markers in body fluids, targeted methods based on stable-isotope dilution and UPLC-MS/MS were developed and applied to plasma samples from a coffee intervention study (n = 13 volunteers) who consumed a single cup of caffeinated coffee brew after a 10-day washout period. Chlorogenic acid-derived metabolites were found to be separated into two groups showing different pharmacokinetic properties. The first group comprised, e.g., ferulic acid and feruloyl sulfate and showed early appearance in the plasma (~1 h). The second group contained particularly chlorogenic acid metabolites formed by the intestinal microflora, appearing late and persisting in the plasma (>6 h). Trigonelline appeared early but persisted with calculated half-life times ~5 h. The plasma levels of caffeine metabolites significantly and progressively increased 2-4 h after coffee consumption and did not reach c max within the time frame of the study. The pharmacokinetic profiles suggest that particularly trigonelline, caffeine, its metabolites, as well as late appearing dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate formed from chlorogenic acid by the intestinal microflora accumulate in the plasma due to their long half-life times during habitual consumption of several cups of coffee distributed over the day. Since some of these metabolites have been reported to show antioxidant effects in vivo, antioxidant-response-element activating potential, and neuroprotective properties, respectively, some of these key metabolites might account for the inflammation- and DM2/AD risk reducing effects reported for habitual life time consumption of coffee.


Asunto(s)
Alcaloides/metabolismo , Cafeína/metabolismo , Ácido Clorogénico/metabolismo , Café/metabolismo , Ácidos Cumáricos/metabolismo , Xantinas/metabolismo , Adulto , Alcaloides/sangre , Alcaloides/orina , Cafeína/sangre , Cafeína/orina , Ácido Clorogénico/sangre , Ácido Clorogénico/orina , Ácidos Cumáricos/sangre , Ácidos Cumáricos/orina , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem , Xantinas/sangre , Xantinas/orina , Adulto Joven
8.
Food Chem ; 405(Pt B): 135026, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36442242

RESUMEN

Arabica roast coffee contains a substantial amount of water soluble atractyligenin-2-O-ß-d-glucoside, which is ingested by consumption of coffee brew. Metabolomics data suggest this coffee compound is excreted as glucuronides, but the structures of conjugates have not been elucidated so far. We collected coffee drinkers' urine and isolated four metabolites by MS-guided liquid chromatographic fractionation. The structures were investigated by nuclear magnetic resonance (NMR) and time-of-flight mass spectrometry (ToF-MS) and identified as atractyligenin-19-O-ß-d-glucuronide (M1), 2ß-hydroxy-15-oxoatractylan-4α-carboxy-19-O-ß-d-glucuronide (M2), and 2ß-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-ß-d-glucuronide (M3). An unconjugated metabolite (M4) was confirmed as atractyligenin. We analyzed spot urines from n = 6 coffee drinking individuals and detected the metabolites M1, M2 and M4 in every sample, and M3 in four out of six samples, suggesting interindividual differences in metabolism.


Asunto(s)
Coffea , Café , Humanos , Glucósidos , Glucurónidos , Atractilósido
9.
J Agric Food Chem ; 71(49): 19516-19522, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38032344

RESUMEN

Roasted coffee contains atractyligenin-2-O-ß-d-glucoside and 3'-O-ß-d-glucosyl-2'-O-isovaleryl-2-O-ß-d-glucosylatractyligenin, which are ingested with the brew. Known metabolites are atractyligenin, atractyligenin-19-O-ß-d-glucuronide (M1), 2ß-hydroxy-15-oxoatractylan-4α-carboxy-19-O-ß-d-glucuronide (M2), and 2ß-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-ß-d-glucuronide (M3), but the appearance and pharmacokinetic properties are unknown. Therefore, first time-resolved quantitative data of atractyligenin glycosides and their metabolites in plasma samples from a pilot human intervention study (n = 10) were acquired. None of the compounds were found in the control samples and before coffee consumption (t = 0 h). After coffee, neither of the atractyligenin glycosides appeared in the plasma, but the aglycone atractyligenin and the conjugated metabolite M1 reached an estimated cmax of 41.9 ± 12.5 and 25.1 ± 4.9 nM, respectively, after 1 h. M2 and M3 were not quantifiable until their concentration enormously increased ≥4 h after coffee consumption, reaching an estimated cmax of 2.5 ± 1.9 and 55.0 ± 57.7 nM at t = 10 h. The data suggest that metabolites of atractyligenin could be exploited to indicate coffee consumption.


Asunto(s)
Café , Glucurónidos , Humanos , Café/metabolismo , Atractilósido , Glicósidos
10.
Nutrients ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904259

RESUMEN

BACKGROUND: Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS: We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS: Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS: Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.


Asunto(s)
Edulcorantes no Nutritivos , Edulcorantes , Humanos , Aditivos Alimentarios , Homeostasis , Neutrófilos , Espectrometría de Masas en Tándem
11.
Front Nutr ; 9: 1082698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601079

RESUMEN

The composition of menus and the sequence of foodstuffs consumed during a meal underlies elaborate rules. However, the molecular foundations for the observed taste- and pleasure-raising effects of complex menus are obscure. The molecular identification and characterization of taste receptors can help to gain insight into the complex interrelationships of food items and beverages during meals. In our study, we quantified important bitter compounds in chicory and chicory-based surrogate coffee and used them to identify responsive bitter taste receptors. The two receptors, TAS2R43 and TAS2R46, are exquisitely sensitive to lactucin, lactucopicrin, and 11ß,13-dihydrolactucin. Sensory testing demonstrated a profound influence of the sequence of consumption of chicory, surrogate coffee, and roasted coffee on the perceived bitterness by human volunteers. These findings pave the way for a molecular understanding of some of the mixture effects underlying empirical meal compositions.

12.
J Agric Food Chem ; 70(14): 4382-4390, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364812

RESUMEN

Linseed oil is rich in unsaturated fatty acids, and its increased consumption could aid in health-promoting nutrition. However, rapid oxidation of linseed oil and concomitant development of bitterness impair consumers' acceptance. Previous research revealed that cyclolinopeptides, a group of cyclic peptides inherent to linseed oil, dominantly contribute to the observed bitterness. In the present study, fresh and stored linseed oil and flaxseed were analyzed for the presence of cyclolinopeptides using preparative high-performance liquid chromatography combined with mass spectrometry- and nuclear magnetic resonance-based identification and quantification. The purified compounds were tested for the activation of all 25 human bitter taste receptors of which only two responded exclusively to methionine-oxidized cyclolinopeptides. Of those, the methionine sulfoxide-containing cyclolinopeptide-4 elicited responses at relevant concentrations. We conclude that this compound is the main determinant of linseed oil's bitterness and propose strategies to reduce the development of bitterness.


Asunto(s)
Lino , Aceite de Linaza , Anciano , Cromatografía Líquida de Alta Presión/métodos , Lino/química , Humanos , Aceite de Linaza/química , Péptidos Cíclicos/química , Gusto
13.
J Agric Food Chem ; 70(48): 15134-15142, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399543

RESUMEN

Pyrazines are among the most important compound class conveying the odor impressions "roasty", "nutty", and "earthy". They are formed by the Maillard reaction and occur ubiquitously in heated foods. The excretion of metabolites of the key flavor odorant 2,3,5-trimethylpyrazine, abundant in the volatile fraction of roasted coffee, was investigated. Based on literature suggestions, putative phase 1 and phase 2 metabolites were synthesized, characterized by nuclear magnetic resonance and mass spectroscopy data and used as standards for targeted, quantitative analysis of coffee drinkers' urine using stable-isotope-dilution-ultrahigh-performance liquid chromatography tandem mass spectroscopy (SIDA-UHPLC-MS/MS). The analysis of spot urine samples from a coffee intervention study revealed 3,6-dimethylpyrazine-2-carboxylic acid, 3,5-dimethylpyrazine-2-carboxylic acid, and 5,6-dimethylpyrazine-2-carboxylic acid were quantitatively dominating metabolites. Only negligible traces of pyrazinemethanols (3,6-dimethyl-2-pyrazinemethanol and 3,5,6-trimethylpyrazine-2-ol), glucuronides ((3,6-dimethylpyrazine-2-yl-)methyl-O-ß-D-glucuronide and (3,5-dimethylpyrazine-2-yl-)methyl-O-ß-D-glucuronide), and sulfates ((3,6-dimethylpyrazine-2-yl-)methyl-sulfate and (3,5-dimethylpyrazine-2-yl-)methyl-sulfate) were detected.


Asunto(s)
Glucurónidos , Espectrometría de Masas en Tándem , Humanos
14.
Aging (Albany NY) ; 14(16): 6427-6448, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35980274

RESUMEN

Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use of arame as a health-promoting food supplement.


Asunto(s)
Proteínas de Drosophila , Phaeophyceae , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Factores de Transcripción Forkhead , Longevidad , Masculino , Phaeophyceae/metabolismo , Proteínas
15.
Mol Nutr Food Res ; 65(23): e2100507, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34658145

RESUMEN

SCOPE: Breast milk is repeatedly postulated to shape the first aroma and taste impressions of infants and thus impact their flavor learning. The objective of this study is to assess the transition of aroma compounds from a customary curry dish into milk. METHODS AND RESULTS: The article prepares a standardized curry dish and administers the dish to nursing mothers (n = 18) in an intervention study. The participants donate one milk sample before and three samples after the intervention. Due to their olfactory or quantitative relevance in the curry dish, 1,8-cineole, linalool, cuminaldehyde, cinnamaldehyde, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, sotolone, eugenol, vanillin, and γ-nonalactone are defined as target compounds, and their transition into milk is quantified by gas chromatography-mass spectrometry. A significant transition into the milk is observed for linalool, and its olfactory relevance in this respect is supported by calculated odor activity values. In contrast, no relevant levels are detected for the other eight target compounds. CONCLUSION: Ingestion of a customary curry dish can lead to an alteration of the milk aroma, which might be perceived by the infant during breastfeeding. The current study also demonstrates that the extent of aroma transfer differs between both substances and individuals.


Asunto(s)
Leche , Compuestos Orgánicos Volátiles , Monoterpenos Acíclicos , Animales , Femenino , Humanos , Leche/química , Madres , Compuestos Orgánicos Volátiles/análisis
16.
Mol Nutr Food Res ; 65(23): e2100508, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34633734

RESUMEN

INTRODUCTION: The diet of breastfeeding mothers could bring nurslings into contact with flavor compounds putatively contributing to early sensory programming of the infant. The study investigates whether tastants from a customary curry dish consumed by mothers are detectable in their milk afterwards and can be perceived by the infant. METHODS AND RESULTS: Sensory evaluation identifies pungency as the dominating taste impression of the curry dish. Its ingredients of chili, pepper, and ginger suggest the flavor compounds capsaicin, piperine, and 6-gingerol as analytical targets. Breastfeeding mothers are recruited for an intervention trial involving the consumption of the curry dish and subsequent collection of milk samples for flavor compound analysis. Targeted and untargeted mass spectrometric (MS)- investigations identify exclusively piperine as an intervention-derived compound in human milk. However, concentrations are below the human taste threshold. CONCLUSION: Piperine from pepper-containing foods transfers into the mother's milk within 1 h and is delivered to the nursling. Concentrations of 50 and 200 nM of piperine are 70-350 times below the human taste threshold, but TRPV1 (Transient Receptor Potential Vanilloid-1 ion channel) desensitization through frequent exposure to sub-taste-threshold concentrations could contribute to an increased tolerance at a later age.


Asunto(s)
Madres , Alcamidas Poliinsaturadas , Alcaloides , Benzodioxoles , Dieta , Femenino , Humanos , Lactante , Leche Humana , Piperidinas
17.
Anal Chem ; 82(4): 1486-97, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20073472

RESUMEN

The paper reports on the development of an accurate hydrophilic liquid interaction chromatography tandem mass spectrometry (HILIC-MS/MS) based stable isotope dilution analysis for the simultaneous quantitation of the food-derived bioactive pyridines trigonelline, nicotinic acid, nicotinamide, and N-methylpyridinium, as well as their key metabolites nicotinamide-N-oxide, N-methylnicotinamide, N-methyl-2-pyridone-5-carboxamide, N-methyl-4-pyridone-5-carboxamide, and N-methyl-2-pyridone-5-carboxylic acid in human plasma and urine. Precision of the stable isotope dilution analysis (SIDA) was 1.9% and 11.9% relative standard deviation (n = 6), and accuracy was between 92.4% and 113.0%. The lower limit of quantitation (LLOQ) was 50 fmol (10 pmol/mL) injected onto the column for all analytes with the exception of N-methyl-2-pyridone-5-carboxylic acid and N-methyl-2-pyridone-5-carboxamide, for which an LLOQ of 100 fmol (20 pmol/mL) was found. The method was applied to monitor the plasma appearance and urinary excretion and to determine pharmacokinetic parameters of the bioactive pyridines as well as their metabolites in a clinical human intervention study with healthy volunteers (six women, seven men) after oral administration of 350 mL of a standard coffee beverage. Trigonelline plasma levels increased from 160 nmol/L to maximum concentrations of 5479 (males) or 6547 nmol/L (females), and N-methylpyridinium plasma levels raised from virtually complete absence to maximum values of 777 (females) or 804 nmol/L (males) within 2-3 and 1-2 h after coffee consumption, respectively. The high plasma levels of N-methylpyridinium found after coffee consumption clearly demonstrate for the first time that this cation is entering the vascular system, which is the prerequisite for biological in vivo effects claimed for that compound. In contrast, the coffee intervention did not significantly influence the plasma concentrations of N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-5-carboxamide, the major niacin metabolites. Within 8 h after coffee intervention, an urinary excretion of 57.4 +/- 6.9% of trigonelline and 69.1 +/- 6.2% of N-methylpyridinium was found for the male volunteers, whereas females excreted slightly less with 46.2 +/- 7.4% and 61.9 +/- 12.2% of these pyridines.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Café , Ingestión de Líquidos , Interacciones Hidrofóbicas e Hidrofílicas , Piridinas/metabolismo , Piridinas/farmacocinética , Espectrometría de Masas en Tándem/métodos , Administración Oral , Adulto , Alcaloides/sangre , Alcaloides/metabolismo , Alcaloides/farmacocinética , Alcaloides/orina , Cromatografía Líquida de Alta Presión/normas , Café/metabolismo , Femenino , Humanos , Isótopos , Masculino , Piridinas/sangre , Piridinas/orina , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/normas , Adulto Joven
18.
Biochim Biophys Acta Bioenerg ; 1861(10): 148251, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32598881

RESUMEN

Saponins are a diverse group of secondary plant metabolites, some of which display hemolytic toxicity due to plasma membrane permeabilization. This feature is employed in biological applications for transferring hydrophilic molecules through cell membranes. Widely used commercial saponins include digitonin and saponins from soap tree bark, both of which constitute complex mixtures of little definition. We assessed the permeabilization power of pure saponins towards cellular membranes in an effort to detect novel properties and to improve existing applications. In a respirometric assay, we characterized half-maximal permeabilization of the plasma membrane for different metabolites, of the mitochondrial outer membrane for cytochrome C and the full solubilization of mitochondrial inner membrane protein complexes. Beyond the complete list as repository for the field, we highlight several findings with direct applicability. First, we identified and validated α-chaconine as alternative permeabilization agent in respirometric assays of cultured cells and isolated synaptosomes, superior to digitonin in its tolerability for mitochondria. Second, we identified glycyrrhizic acid to form exceptionally small pores impermeable for adenosine diphosphate. Third, in a concentration dependent manner, tomatine proved to be able to selectively permeabilize the mitochondrial outer, but not inner membrane, allowing for novel states in which to determine cytochrome C oxidase activity. In summary, we provide a list of the permeabilization properties of 18 pure saponins. The identification of two saponins, namely tomatine and chaconine, with direct usability in improved or novel cell biological applications within this small subgroup demonstrates the tremendous potential for further functional screening of pure saponins.


Asunto(s)
Metabolismo/efectos de los fármacos , Saponinas/farmacología , Animales , Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Ratones
19.
Sci Rep ; 10(1): 697, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959821

RESUMEN

Pellicle is the initial proteinaceous layer that is formed almost instantaneously on all solid surfaces in the oral cavity. It is of essential relevance for any interactions and metabolism on the tooth surface. Up to now, there is no information on the metabolome of this structure. Accordingly, the present study aims to characterise the metabolomic profile of in-situ pellicle in children with different caries activity for the first time in comparison to saliva. Small molecules such as carbohydrates, amino acids, organic acids, and fatty acids, putatively involved in the formation of caries were quantified using mass spectrometry (MS)-based techniques, such as (stable isotope dilution analysis)-ultra-performance liquid chromatography-tandem MS and gas chromatography/electron ionisation-MS. Pellicle and corresponding saliva samples were collected from caries-active, caries-free and caries-rehabilitated 4- to 6-year-old children. The most abundant analytes in pellicle were acetic acid (1.2-10.5 nmol/cm2), propionic acid (0.1-8.5 nmol/cm2), glycine (0.7-3.5 nmol/cm2), serine (0.08-2.3 nmol/cm2), galactose (galactose + mannose; 0.035-0.078 nmol/cm2), lactose (0.002-0.086 nmol/cm2), glucose (0.018-0.953 nmol/cm2), palmitic acid (0.26-2.03 nmol/cm2), and stearic acid (0.34-1.81 nmol/cm2). Significant differences depending on caries activity were detected neither in saliva nor in the corresponding pellicle samples.


Asunto(s)
Caries Dental/metabolismo , Película Dental/química , Metabolómica/métodos , Saliva/química , Ácido Acético/análisis , Estudios de Casos y Controles , Niño , Preescolar , Cromatografía Liquida , Glicina/análisis , Humanos , Masculino , Propionatos/análisis , Espectrometría de Masas en Tándem
20.
J Agric Food Chem ; 68(24): 6692-6700, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32437139

RESUMEN

Coffee is one of the most consumed hot beverages worldwide and is highly regarded because of its stimulating effect despite having a pronounced bitterness. Even though numerous bitter ingredients have been identified, the detailed molecular basis for coffee's bitterness is not well understood except for caffeine, which activates five human bitter taste receptors. We elucidated the contribution of other bitter coffee constituents in addition to caffeine with functional calcium imaging experiments using mammalian cells expressing the cDNAs of human bitter taste receptors, sensory experiments, and in silico modeling approaches. We identified two human bitter taste receptors, TAS2R43 and TAS2R46, that responded to the bitter substance mozambioside with much higher sensitivity than to caffeine. Further, the structurally related bitter substances bengalensol, cafestol, and kahweol also activated the same pair of bitter taste receptors much more potently than the prototypical coffee bitter substance caffeine. However, for kahweol, a potent but weak activator of TAS2R43 and TAS2R46, we observed an inhibitory effect when simultaneously applied together with mozambioside to TAS2R43 expressing cells. Molecular modeling experiments showed overlapping binding sites in the receptor's ligand binding cavity that suggest that the partial agonist kahweol might be useful to reduce the overall bitterness of coffee-containing beverages. Taken together, we found that the bitterness of coffee is determined by a complex interaction of multiple bitter compounds with several human bitter taste receptors.


Asunto(s)
Coffea/metabolismo , Aromatizantes/metabolismo , Cafeína/química , Cafeína/metabolismo , Coffea/química , Aromatizantes/química , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Semillas/química , Semillas/metabolismo , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA