Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 136: 106529, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084585

RESUMEN

The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signalling pathway drives severe pathologies, including cancer development and angiogenesis-driven pathologies. The perturbation of the FGF2/FGFR axis via extracellular allosteric small inhibitors is a promising strategy for developing FGFR inhibitors with improved safety and efficacy for cancer treatment. We have previously investigated the role of new extracellular inhibitors, such as rosmarinic acid (RA), which bind the FGFR-D2 domain and directly compete with FGF2 for the same binding site, enabling the disruption of the functional FGF2/FGFR interaction. To select ligands for the previously identified FGF2/FGFR RA binding site, NMR data-driven virtual screening has been performed on an in-house library of non-commercial small molecules and metabolites. A novel drug-like compound, a resorcinol derivative named RBA4 has been identified. NMR interaction studies demonstrate that RBA4 binds the FGF2/FGFR complex, in agreement with docking prediction. Residue-level NMR perturbations analysis highlights that the mode of action of RBA4 is similar to RA in terms of its ability to target the FGF2/FGFR-D2 complex, inducing perturbations on both proteins and triggering complex dissociation. Biological assays proved that RBA4 inhibited FGF2 proliferative activity at a level comparable to the previously reported natural product, RA. Identification of RBA4 chemical groups involved in direct interactions represents a starting point for further optimization of drug-like extracellular inhibitors with improved activity.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Neoplasias , Humanos , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Resorcinoles/química , Resorcinoles/farmacología
2.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569576

RESUMEN

The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuroblastoma , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 4 Similar a ELAV/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo
3.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298633

RESUMEN

The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.


Asunto(s)
Melanoma , Receptores sigma , Humanos , Apoptosis , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Transducción de Señal , Receptores sigma/genética , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción Activador 4/metabolismo , eIF-2 Quinasa/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686340

RESUMEN

Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE-AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues.


Asunto(s)
COVID-19 , Elastasa de Leucocito , Humanos , SARS-CoV-2 , Oxidación-Reducción , Transporte Biológico
5.
Molecules ; 28(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894644

RESUMEN

Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.


Asunto(s)
Péptidos , Péptidos/uso terapéutico , Péptidos/química , Técnicas de Química Sintética , Preparaciones Farmacéuticas
6.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985513

RESUMEN

LsrK is a bacterial kinase that triggers the quorum sensing, and it represents a druggable target for the identification of new agents for fighting antimicrobial resistance. Herein, we exploited tryptophan fluorescence spectroscopy (TFS) as a suitable technique for the identification of potential LsrK ligands from an in-house library of chemicals comprising synthetic compounds as well as secondary metabolites. Three secondary metabolites (Hib-ester, Hib-carbaldehyde and (R)-ASME) showed effective binding to LsrK, with KD values in the sub-micromolar range. The conformational changes were confirmed via circular dichroism and molecular docking results further validated the findings and displayed the specific mode of interaction. The activity of the identified compounds on the biofilm formation by some Staphylococcus spp. was investigated. Hib-carbaldehyde and (R)-ASME were able to reduce the production of biofilm, with (R)-ASME resulting in the most effective compound with an EC50 of 14 mg/well. The successful application of TFS highlights its usefulness in searching for promising LsrK inhibitor candidates with inhibitor efficacy against biofilm formation.


Asunto(s)
Antiinfecciosos , Percepción de Quorum , Ligandos , Simulación del Acoplamiento Molecular , Biopelículas , Antiinfecciosos/farmacología , Antibacterianos/farmacología
7.
Chirality ; 34(3): 498-513, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34962318

RESUMEN

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. In our previous work, we identified in racemate 1-2, based on the 2-benzyl-3-hydroxypropyl ester scaffold, two new potent and promising PKCα and PKCδ ligands, targeting the C1 domain of these two kinases. Herein, we report the resolution of the racemates by enantioselective semi-preparative HPLC. The attribution of the absolute configuration (AC) of homochirals 1 was performed by NMR, via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (MTPA or Mosher's acid). Moreover, the match between the experimental and predicted electronic circular dichroism (ECD) spectra confirmed the assigned AC. These results proved that Mosher's esters can be properly exploited for the determination of the AC also for chiral primary alcohols. Lastly, homochiral 1 and 2 were assessed for binding affinity and functional activity against PKCα. No significative differences in the Ki of the enantiopure compounds was observed, thus suggesting that chirality does not seem to play a significant role in targeting PKC C1 domain. These results are in accordance with the molecular docking studies performed using a new homology model for the human PKCαC1B domain.


Asunto(s)
Ésteres , Proteína Quinasa C-alfa , Cromatografía Líquida de Alta Presión/métodos , Humanos , Simulación del Acoplamiento Molecular , Estereoisomerismo
8.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361848

RESUMEN

The insurgence of drug resistance in treating Multiple Myeloma (MM) still represents a major hamper in finding effective treatments, although over the past decades new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have been discovered. Recently, our research team, within a Nature-Aided Drug Discovery project, isolated from Hibiscus Sabdariffa L. calyces the secondary metabolite called Hib-ester which possesses antiproliferative properties against human multiple myeloma RPMI 8226 cells, reduces migration and cell invasion and inhibits proteasome without neurotoxic effects. In the present study, we explored the chemical spaces of the hit compound Hib-ester. We explored the structure-activity relationships (SAR), and we optimized the scaffold through sequentially modifying Hib-ester subunits. Compound screening was performed based on cytotoxicity against the RPMI 8226 cells to assess the potential efficacy toward human MM. The ability of the most effective molecules to inhibit the proteasome was evaluated and the binding mode of the most promising compounds in the proteasome chymotrypsin binding pocket was deciphered through molecular modeling simulations. Compounds 13 and 14 are more potent than Hib-ester, demonstrating that our strategy was suitable for the identification of a novel chemotype for developing possible drug candidates and hopefully widening the drug armamentarium against MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Ésteres , Antineoplásicos/uso terapéutico
9.
Molecules ; 27(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35889200

RESUMEN

Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles' heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neoplasias , Reposicionamiento de Medicamentos , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/patología , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , SARS-CoV-2 , Ticlopidina/farmacología , Respuesta de Proteína Desplegada
10.
Bioorg Chem ; 106: 104462, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213894

RESUMEN

Histone Deacetylases (HDACs) are among the most attractive and interesting targets in anticancer drug discovery. The clinical relevance of HDAC inhibitors (HDACIs) is testified by four FDA-approved drugs for cancer treatment. However, one of the main drawbacks of these drugs resides in the lack of selectivity against the different HDAC isoforms, resulting in severe side effects. Thus, the identification of selective HDACIs represents an exciting challenge for medicinal chemists. HDACIs are composed of a cap group, a linker region, and a metal-binding group interacting with the catalytic zinc ion. While the cap group has been extensively investigated, less information is available about the effect of the linker on isoform selectivity. To this aim, in this work, we explored novel linker chemotypes to direct isoform selectivity. A small library of 25 hydroxamic acids with hitherto unexplored linker chemotypes was prepared. In vitro tests demonstrated that, depending on the linker type, some candidates selectively inhibit HDAC1 over HDAC6 isoform or vice versa. Docking calculations were performed to rationalize the effect of the novel linker chemotypes on biologic activity. Moreover, four compounds were able to increase the levels of acetylation of histone H3 or tubulin. These compounds were also assayed in breast cancer MCF7 cells to test their antiproliferative effect. Three compounds showed a significant reduction of cancer proliferation, representing valuable starting points for further optimization.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Acetilación/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/metabolismo , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
11.
J Enzyme Inhib Med Chem ; 36(1): 2080-2086, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34583596

RESUMEN

Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.


Asunto(s)
Complejos de Coordinación/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Zinc/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Zinc/química
12.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575952

RESUMEN

Sigma1 Receptor (S1R) is involved in oxidative stress, since its activation is triggered by oxidative or endoplasmic reticulum stress. Since specific aquaporins (AQP), called peroxiporins, play a relevant role in controlling H2O2 permeability and ensure reactive oxygen species wasted during oxidative stress, we studied the effect of S1R modulators on AQP-dependent water and hydrogen peroxide permeability in the presence and in the absence of oxidative stress. Applying stopped-flow light scattering and fluorescent probe methods, water and hydrogen peroxide permeability in HeLa cells have been studied. Results evidenced that S1R agonists can restore water permeability in heat-stressed cells and the co-administration with a S1R antagonist totally counteracted the ability to restore the water permeability. Moreover, compounds were able to counteract the oxidative stress of HeLa cells specifically knocked down for S1R. Taken together these results support the hypothesis that the antioxidant mechanism is mediated by both S1R and AQP-mediated H2O2 permeability. The finding that small molecules can act on both S1R and AQP-mediated H2O2 permeability opens a new direction toward the identification of innovative drugs able to regulate cell survival during oxidative stress in pathologic conditions, such as cancer and degenerative diseases.


Asunto(s)
Acuaporinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores sigma/genética , Acuaporinas/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Permeabilidad/efectos de los fármacos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores sigma/agonistas , Receptores sigma/metabolismo , Receptor Sigma-1
13.
Molecules ; 26(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467133

RESUMEN

During the years, many usnic acid (UA) conjugates have been synthesized to obtain potent endowed with biological properties. Since (S)-UA is less abundant in nature than (R)-enantiomer, it is difficult to source, thus precluding a deeper investigation. Among the lichens producing UA, Cladonia foliacea is a valuable (S)-UA source. In the present work, we report on a rapid HPLC-UV/PAD-CD protocol suitable for the analysis and the identification of the main secondary metabolites present in C. foliacea extract. Best results were achieved using XBridge Phenyl column and acetonitrile and water, which were both added with formic acid as mobile phase in gradient elution. By combining analytical, spectroscopical, and chiroptical analysis, the most abundant analyte was unambiguously identified as (S)-UA. Accordingly, a versatile microwave-assisted extractive (MAE) protocol, assisted by a design of experiment (DoE), to quantitatively recover (S)-UA was set up. The best result in terms of UA extraction yield was obtained using ethanol and heating at 80 °C under microwave irradiation for 5 min. Starting from 100 g of dried C. foliacea, 420 mg of (S)-UA were achieved. Thus, our extraction method resulted in a suitable protocol to produce (S)-UA from C. foliacea for biological and pharmaceutical investigation or commercial purposes.


Asunto(s)
Ascomicetos/química , Benzofuranos/análisis , Microondas , Cromatografía Líquida de Alta Presión , Espectrofotometría Ultravioleta
14.
J Nat Prod ; 83(1): 88-98, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891265

RESUMEN

The butyl homologues of Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabutol (Δ9-THCB), and cannabidiol, cannabidibutol (CBDB), were isolated from a medicinal Cannabis sativa variety (FM2) inflorescence. Appropriate spectroscopic and spectrometric characterization, including NMR, UV, IR, ECD, and HRMS, was carried out on both cannabinoids. The chemical structures and absolute configurations of the isolated cannabinoids were confirmed by comparison with the spectroscopic data of the respective compounds obtained by stereoselective synthesis. The butyl homologue of Δ9-THC, Δ9-THCB, showed an affinity for the human CB1 (Ki = 15 nM) and CB2 receptors (Ki = 51 nM) comparable to that of (-)-trans-Δ9-THC. Docking studies suggested the key bonds responsible for THC-like binding affinity for the CB1 receptor. The formalin test in vivo was performed on Δ9-THCB in order to reveal possible analgesic and anti-inflammatory properties. The tetrad test in mice showed a partial agonistic activity of Δ9-THCB toward the CB1 receptor.


Asunto(s)
Analgésicos/farmacología , Cannabidiol/química , Cannabinoides/química , Cannabis/química , Dronabinol/química , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB2/química , Animales , Cannabinoides/aislamiento & purificación , Dronabinol/aislamiento & purificación , Humanos , Marihuana Medicinal , Ratones , Estructura Molecular , Receptor Cannabinoide CB1/aislamiento & purificación , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
15.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081037

RESUMEN

Sigma-1 receptor (S1R) is a promising molecular target for the development of novel effective therapies against neurodegenerative diseases. To speed up the discovery of new S1R modulators, herein we report the development of a reliable in silico protocol suitable to predict the affinity of small molecules against S1R. The docking method was validated by comparing the computational calculated Ki values of a test set of new aryl-aminoalkyl-ketone with experimental determined binding affinity. The druggability profile of the new compounds, with particular reference to the ability to cross the blood-brain barrier (BBB) was further predicted in silico. Moreover, the selectivity over Sigma-2 receptor (S2R) and N-methyl-D-aspartate (NMDA) receptor, another protein involved in neurodegeneration, was evaluated. 1-([1,1'-biphenyl]-4-yl)-4-(piperidin-1-yl)butan-1-one (12) performed as the best compound and was further investigated for acetylcholinesterase (AchE) inhibitor activity and determination of antioxidant activity mediated by aquaporins (AQPs). With a good affinity against both S1R and NMDA receptor, good selectivity over S2R and favorable BBB penetration potential together with its AChE inhibitory activity and its ability to exert antioxidant effects through modulation of AQPs, 12 represents a viable candidate for further development as a neuroprotective agent.


Asunto(s)
Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Receptores sigma/antagonistas & inhibidores , Receptores sigma/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Células HeLa , Humanos , Ligandos , Fármacos Neuroprotectores/química , Reproducibilidad de los Resultados , Receptor Sigma-1
16.
Photochem Photobiol Sci ; 18(9): 2270-2280, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30900698

RESUMEN

A benzothiophene-substituted chromenone with promising activity against Leishmania and Trypanosoma species exhibits peculiar fluorescence properties useful for identifying its complexes with target proteins in the microorganism proteomes. The emission spectra, anisotropy and time profiles of this flavonoid strongly change when moving from the free to the protein-bound forms. The same two types of emission are observed in organic solvents and their mixtures with water, with the relative band intensities depending on the solvent ability to establish hydrogen bonds with the solute. The regular emission prevails in protic solvents, while in aprotic solvents the anomalously red-shifted emission occurs from a zwitterionic tautomeric form, produced in the excited state by proton transfer within the intramolecularly H-bonded form. This interpretation finds support from an experimental and theoretical investigation of the conformational preferences of this compound in the ground and lowest excited state, with a focus on the relative twisting about the chromenone-benzothiophene interconnecting bond. An analysis of the absorption and emission spectra and of the photophysical properties of the two emitting tautomers highlights the relevance of the local microenvironment, particularly of the intra- and intermolecular hydrogen bonds in which this bioactive compound is involved, in determining both its steady-state and time-resolved fluorescence behaviour.


Asunto(s)
Teoría Funcional de la Densidad , Flavonoides/química , Flavonoides/farmacología , Fluorescencia , Proteoma/antagonistas & inhibidores , Protones , Proteínas Protozoarias/antagonistas & inhibidores , Enlace de Hidrógeno , Leishmania/efectos de los fármacos , Estructura Molecular , Proteoma/química , Proteínas Protozoarias/química , Trypanosoma/efectos de los fármacos
17.
J Comput Aided Mol Des ; 33(2): 295-305, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30603820

RESUMEN

The worldwide spread of beta-lactamases with hydrolytic activity extended to last resort carbapenems is aggravating the antibiotic resistance problem and endangers the successful antimicrobial treatment of clinically relevant pathogens. As recently highlighted by the World Health Organization, new strategies to contain antimicrobial resistance are urgently needed. Class A carbapenemases include members of the KPC, GES and SFC families. These enzymes have the ability to hydrolyse penicillins, cephalosporins and carbapenems, while also being less susceptible to available beta-lactam inhibitors, such as clavulanic acid. The KPC family is the most prevalent. It is mostly found on plasmids in Klebsiella pneumoniae, meaning that great amounts of attention, in terms of inhibitor design and structural biology, have been dedicated to it, whereas no efforts have yet been dedicated to GES-type enzymes, despite their ability to rapidly and horizontally disseminate. We herein report the first in silico screening against GES-5, which is the most dangerous GES-type beta-lactamase, using a library of 800K commercially available candidates that all share drug-like properties, such as their MW, logP, rotatable bonds and HBA/HBD atoms. The best screening results were filtered to enrich the number of different chemotypes, and then submitted to molecular docking. The 34 most promising candidates were selected for in vitro validation in biochemical assays against recombinant GES-5. Six hits acted as inhibitors, in the high micromolar range, towards GES-5 and led to the identification of the first, novel chemotypes with inhibitory activity against this clinically relevant carbapenemase.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular/métodos , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Simulación por Computador , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Unión Proteica , Pseudomonas aeruginosa/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Termodinámica
18.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561530

RESUMEN

Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Sitio Alostérico , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Activación Enzimática , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
19.
ACS Omega ; 9(16): 17691-17705, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680367

RESUMEN

Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.

20.
J Pharm Biomed Anal ; 239: 115902, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101238

RESUMEN

The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.


Asunto(s)
Receptores sigma , Humanos , Ratones , Animales , Estereoisomerismo , Microsomas Hepáticos , Unión Proteica , Cromatografía Líquida de Alta Presión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA