Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343064

RESUMEN

Advanced antifouling biosensors have garnered considerable attention for their potential for precise and sensitive analysis in complex human bodily fluids. Herein, a pioneering approach was utilized to establish a robust and versatile photoelectrochemical aptasensor by conjugating a zwitterionic peptide with a DNA strand. Specifically, the branched zwitterionic peptide (BZP) was efficiently linked to complementary DNA (cDNA) through a click reaction, forming the BZP-cDNA conjugate. This intriguing conjugate exploited the BZP domain to create an antifouling biointerface, while the cDNA component facilitated subsequent hybridization with probe DNA (pDNA). To advance the development of the aptasensor, an upgraded PDA/HOF-101/ZnO ternary photoelectrode was designed as the signal converter for the modification of the BZP-cDNA conjugate, while a bipyridinium (MCEPy) molecule with strong electron-withdrawing properties was labeled at the front end of the pDNA to form the pDNA-MCEPy signal probe. Targeting the model of mucin-1, a remarkable enhancement in the photocurrent signal was achieved through exonuclease-I-aided target recycling. Such an engineered zwitterionic peptide-DNA conjugate surpasses the limitations imposed by conventional peptide-based sensing modes, exhibiting unique advantages such as versatility in design and capability for signal amplification.

2.
Anal Chem ; 96(1): 531-537, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38115190

RESUMEN

Electrochemical biosensing devices face challenges of severe nonspecific adsorption in complex biological matrices for the detection of biomarkers, and thus, there is a significant need for sensitive and antifouling biosensors. Herein, a sensitive electrochemical biosensor with antifouling and antiprotease hydrolysis ability was constructed for the detection of human epidermal growth factor receptor 2 (HER2) by integrating multifunctional branched peptides with distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) self-assembled bilayer. The peptide was designed to possess antifouling, antiprotease hydrolysis, and HER2 recognizing capabilities. Molecular dynamics simulations demonstrated that the DSPE was able to effectively self-assemble into a bilayer, and the water contact angle and electrochemical experiments verified that the combination of peptide with the DSPE-PEG bilayer was conducive to enhancing the hydrophilicity and antifouling performance of the modified surface. The constructed HER2 biosensor exhibited excellent antifouling and antiprotease hydrolysis capabilities, and it possessed a linear range of 1.0 pg mL-1 to 1.0 µg mL-1, and a limit of detection of 0.24 pg mL-1. In addition, the biosensor was able to detect HER2 in real human serum samples without significant biofouling, and the assaying results were highly consistent with those measured by the enzyme-linked immunosorbent assay (ELISA), indicating the promising potential of the antifouling biosensor for clinical diagnosis.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , Humanos , Técnicas Electroquímicas/métodos , Péptidos/química , Técnicas Biosensibles/métodos , Polietilenglicoles , Incrustaciones Biológicas/prevención & control , Inhibidores de Proteasas
3.
Anal Chem ; 96(19): 7550-7557, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38706132

RESUMEN

Developing precise tumor cell-specific mitochondrial ferroptosis-related inhibition miRNA imaging methods holds enormous potential for anticancer drug screening and cancer treatment. Nevertheless, traditional amplification methods still tolerated the limited tumor specificity because of the "off-tumor" signal leakage resulting from their "always-active" sensing mode. To overcome this limitation, we herein developed a dual (exogenous 808 nm NIR light and endogenous APE1) activated nanoladder for precise imaging of mitochondrial ferroptosis-related miRNA with tumor cell specificity and improved imaging resolution. Exogenous NIR light-activation can regulate the ferroptosis-related inhibition miRNA imaging signals within mitochondria, and endogenous enzyme-activation can confine signals to tumor cells. Based on this dual activation design, off-tumor signals were greatly reduced and tumor-to-background contrast was enhanced with an improved tumor/normal discrimination ratio, realizing tumor cell-specific precise imaging of mitochondrial ferroptosis-related inhibition miRNA.


Asunto(s)
Ferroptosis , MicroARNs , Mitocondrias , Ferroptosis/efectos de los fármacos , Humanos , MicroARNs/metabolismo , MicroARNs/análisis , Mitocondrias/metabolismo , Animales , Ratones , Imagen Óptica , Línea Celular Tumoral , Rayos Infrarrojos , Nanopartículas/química
4.
Anal Chem ; 96(11): 4402-4409, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457775

RESUMEN

The ultrasensitive DNA methyltransferase (Dam MTase) assay is of high significance for biomedical research and clinical diagnosis because of its profound effect on gene regulation. However, detection sensitivity is still limited by shortcomings, including photobleaching and weak signal intensities of conventional fluorophores at low concentrations. Plasmonic nanostructures with ultrastrong electromagnetic fields and fluorescence enhancement capability that can overcome these intrinsic defects hold great potential for ultrasensitive bioanalysis. Herein, a silica-coated gold nanostars (Au NSTs@SiO2)-based plasmon-enhanced fluorescence (PEF) probe with 20 "hot spots" was developed for ultrasensitive detection of Dam MTase. Here, the Dam Mtase assay was achieved by detecting the byproduct PPi of the rolling circle amplification reaction. It is worth noting that, benefiting from the excellent fluorescence enhancement capability of Au NSTs originating from their 20 "hot spots", the detection limit of Dam Mtase was reduced by nearly 105 times. Moreover, the proposed Au NST-based PEF probe enabled versatile evaluation of Dam MTase inhibitors as well as endogenous Dam MTase detection in GW5100 and JM110 Escherichia coli cell lysates, demonstrating its potential in biomedical analysis.


Asunto(s)
Técnicas Biosensibles , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/análisis , Dióxido de Silicio , Oro/química , Metilasas de Modificación del ADN , Escherichia coli , Colorantes Fluorescentes/química , ADN , Sondas de ADN/química
5.
Anal Chem ; 96(19): 7747-7755, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691774

RESUMEN

Accurate classification of tumor cells is of importance for cancer diagnosis and further therapy. In this study, we develop multimolecular marker-activated transmembrane DNA computing systems (MTD). Employing the cell membrane as a native gate, the MTD system enables direct signal output following simple spatial events of "transmembrane" and "in-cell target encounter", bypassing the need of multistep signal conversion. The MTD system comprises two intelligent nanorobots capable of independently sensing three molecular markers (MUC1, EpCAM, and miR-21), resulting in comprehensive analysis. Our AND-AND logic-gated system (MTDAND-AND) demonstrates exceptional specificity, allowing targeted release of drug-DNA specifically in MCF-7 cells. Furthermore, the transformed OR-AND logic-gated system (MTDOR-AND) exhibits broader adaptability, facilitating the release of drug-DNA in three positive cancer cell lines (MCF-7, HeLa, and HepG2). Importantly, MTDAND-AND and MTDOR-AND, while possessing distinct personalized therapeutic potential, share the ability of outputting three imaging signals without any intermediate conversion steps. This feature ensures precise classification cross diverse cells (MCF-7, HeLa, HepG2, and MCF-10A), even in mixed populations. This study provides a straightforward yet effective solution to augment the versatility and precision of DNA computing systems, advancing their potential applications in biomedical diagnostic and therapeutic research.


Asunto(s)
ADN , Molécula de Adhesión Celular Epitelial , MicroARNs , Humanos , Molécula de Adhesión Celular Epitelial/metabolismo , ADN/química , MicroARNs/análisis , MicroARNs/metabolismo , Mucina-1/metabolismo , Mucina-1/análisis , Computadores Moleculares , Células MCF-7 , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Membrana Celular/metabolismo , Membrana Celular/química , Células Hep G2
6.
Chemistry ; 30(5): e202302684, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888750

RESUMEN

The exploration of advanced nickel-based electrocatalysts for alkaline methanol oxidation reaction (MOR) holds immense promise for value-added organic products coupled with hydrogen production, but still remain challenging. Herein, we construct ultrathin NiO/Cr2 O3 in-plane heterostructures to promote the alkaline MOR process. Experimental and theoretical studies reveal that NiO/Cr2 O3 in-plane heterostructures enable a favorable upshift of the d-band center and enhanced adsorption of hydroxyl species, leading to accelerated generation of active NiO(OH)ads species. Furthermore, ultrathin in-plane heterostructures endow the catalyst with good charge transfer ability and adsorption behavior of methanol molecules onto catalytic sites, contributing to the improvement of alkaline MOR kinetics. As a result, ultrathin NiO/Cr2 O3 in-plane heterostructures exhibit a remarkable MOR activity with a high current density of 221 mA cm-2 at 0.6 V vs Ag/AgCl, which is 7.1-fold larger than that of pure NiO nanosheets and comparable with other highly active catalysts reported so far. This work provides an effectual strategy to optimize the activity of nickel-based catalysts and highlights the dominate efficacy of ultrathin in-plane heterostructures in alkaline MOR.

7.
Soft Matter ; 20(15): 3243-3247, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572565

RESUMEN

In this study, by fabricating DNA doped with tetraphenylethene-containing ammonium surfactant, the resulting solvent-free DNA ionic complex could undergo a humidity-induced phase change that could be well tracked by the fluorescence signal of the surfactant. Taking advantage of the humidity-induced change in fluorescence, the reported ionic DNA complex could accurately indicate the humidity in real time.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Humedad , Materiales Biocompatibles , ADN/química , Tensoactivos/química
8.
Mikrochim Acta ; 191(7): 406, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898359

RESUMEN

Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.


Asunto(s)
Microinyecciones , Agujas , Humanos , Microinyecciones/instrumentación , Piel , Sistemas de Atención de Punto , Animales , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Dispositivos Electrónicos Vestibles
9.
Mikrochim Acta ; 191(3): 138, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38361136

RESUMEN

Surface fouling poses a significant challenge that restricts the analytical performance of electrochemical sensors in both in vitro and in vivo applications. Biofouling resistance is paramount to guarantee the reliable operation of electrochemical sensors in complex biofluids (e.g., blood, serum, and urine). Seeking efficient strategies for surface fouling and establishing highly sensitive sensing platforms for applications in complex media have received increasing attention in the past. In this review, we provide a comprehensive overview of recent research efforts focused on antifouling electrochemical sensors. Initially, we present a detailed illustration of the concept about biofouling along with an exploration of four key antifouling mechanisms. Subsequently, we delve into the commonly employed antifouling strategies in the fabrication of electrochemical sensors. These encompass physical surface topography (micro/nanostructure coatings and filtration membranes) and chemical surface modifications (PEG and its derivatives, zwitterionic polymers, peptides, proteins, and various other antifouling materials). The progress in antifouling electrochemical sensors is proposed concerning the antifouling mechanisms as well as sensing capability assessments (e.g., sensitivity, stability, and practical application ability). Finally, we summarize the evolving trends in the field and highlight some key remaining limitations.


Asunto(s)
Incrustaciones Biológicas , Nanoestructuras , Incrustaciones Biológicas/prevención & control , Polímeros/química , Proteínas , Péptidos/química , Nanoestructuras/química
10.
Anal Chem ; 95(37): 14119-14126, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37683257

RESUMEN

The building of practical biosensors that have anti-interference abilities against biofouling of nonspecific proteins and biooxidation of reducing agents in actual biological matrixes remains a great challenge. Herein, a robust photoelectrochemical (PEC) biosensor capable of accurate detection in human serum was pioneered through the integration of a new engineered branching peptide (EBP) into a synergetic dual-photoelectrode system. The synergetic dual-photoelectrode system involved the tandem connection of a C3N4/TiO2 photoanode and a AuPt/PANI photocathode, while the EBP as a dual-functional antifouling and recognition probe featured an inverted Y-shaped configuration with one recognition backbone and two antifouling branches. Such an EBP enables a simple procedure for electrode modification and an enhanced antifouling nature compared to a regular linear peptide (LP), as theoretically supported by the results from molecular dynamics simulations. The as-developed PEC biosensor had a higher photocurrent response and a good antioxidation property inherited from the photoanode and photocathode, respectively. Targeting the model protein biomarker of cardiac troponin I (cTnI), this biosensor achieved good performances in terms of high sensitivity, specificity, and anti-interference.


Asunto(s)
Incrustaciones Biológicas , Humanos , Incrustaciones Biológicas/prevención & control , Péptidos , Troponina I , Antioxidantes , Electrodos
11.
Anal Chem ; 95(50): 18540-18548, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38055692

RESUMEN

Developing a generalized strategy for the nonfouling detection of biomarkers in diverse biological fluids presents a significant challenge. Herein, a polyhydroxyproline helical peptide (PHHP) was designed and adopted to fabricate electrochemical microsensors capable of detecting targets in various biological media. The PHHP possessed unique properties such as strong hydrophilicity, rigid structure, and lack of ionizable side-chain groups. Compared with common zwitterionic peptides (ZIPs), the PHHP exhibited similar antifouling capability but exceptional stability, allowing its antifouling performance to be unaffected by environmental alteration. The PHHP can prevent biofouling even in fluctuating pH conditions, high ionic strength environments, and the presence of high-valence ions and resist the protease hydrolysis. The PHHP-modified carbon fiber microelectrode was further immobilized with an aptamer to construct an antifouling microsensor for cortisol detection across diverse biofluids, and the microsensor exhibited acceptable accuracy and higher sensitivity than the ELISA method. In addition, different biological samples of mice were collected in situ using a microsensing device, and cortisol levels were analyzed in each specifically tailored region. This nonfouling sensing strategy based on PHHP allows a comprehensive assessment of biomarkers in both spatial and temporal dimensions in diverse biological environments, holding promising potential for early disease diagnosis and real-time health monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Incrustaciones Biológicas , Técnicas Biosensibles , Animales , Ratones , Incrustaciones Biológicas/prevención & control , Hidrocortisona , Técnicas Biosensibles/métodos , Péptidos/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Biomarcadores
12.
Anal Chem ; 95(23): 9025-9033, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37246356

RESUMEN

Specific peptide-protein interactions play an important role in biosensing systems based on functional peptides; however, the non-specific interactions with unrelated biomolecules and poor proteolytic stability restrict the clinical application of natural peptides. Here, we leveraged a self-designed multifunctional isopeptide (MISP) to construct an electrochemical biosensing platform for annexin A1 (ANXA1) detection in human blood. The MISP was designed to contain two parts: an antifouling cyclotide cyclo-C(EK)4 and a d-amino acid-containing carbohydrate-mimetic recognizing peptide IF-7 (D-IF7) connected by the isopeptide bond. We have discussed the properties of the cyclotide and illustrated its unique advantage over the natural linear antifouling peptides by molecular dynamics simulations, and the results were further confirmed by dissipative quartz crystal microbalance (QCM-D). In addition, through electrochemical experiments and fluorescence imaging experiments, we demonstrated that the MISP-based biosensor possessed excellent antifouling ability and proteinase hydrolysis stability. Interestingly, the assaying results of the MISP-biosensor were consistent with those of the commercial ANXA1 kits in a variety of healthy and ANXA1-upregulated clinical blood samples, and, more importantly, for the analysis of blood samples with lower ANXA1 expressions, the sensing capability of the biosensor was greatly superior to that of the kits because of the lower detection limit of the MISP-biosensor. This biosensing platform based on the designed MISP offers enormous potential for achieving accurate biomarker detection with robust operation in complex biological samples.


Asunto(s)
Anexina A1 , Técnicas Biosensibles , Ciclotidas , Humanos , Anexina A1/metabolismo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
13.
Anal Chem ; 95(6): 3525-3531, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36740823

RESUMEN

Developing an endogenous stimuli-responsive and ultrasensitive DNA sensing platform that contains a logic gate biocomputation for precise cell subtype identification holds great potential for disease diagnosis and prognostic estimation. Herein, a fluorescence-enhanced "OR-AND" DNA logic platform dual-driven by intracellular apurinic/apyrimidinic endonuclease 1 (APE 1) or a DNA strand anchored on membrane protein Mucin 1 (MUC 1) for sensitive and accurate cell subtype identification was rationally designed. The recognition toehold of the traditional activated probe (TP) was restrained by introducing a blocking sequence containing an APE 1 cleavable site (AP-site) that can be either cleaved by APE 1 or replaced by Mk-apt, ensuring the "OR-AND" gated molecular imaging for cell subtype identification. It is worth noting that this "OR-AND" gated design can effectively avoid the missing logical computation caused by membrane protein heterogeneous spatial distribution as a single input. In addition, a benefit from the excellent plasmon-enhanced fluorescence (PEF) ability of Au NSTs is that the detection limit can be decreased by nearly 165 times. Based on this, not only different kinds of MCF-7, HepG2, and L02 cells, but also different breast cancer cell subtypes, including malignant MCF-7, metastatic MDA-MB-231, and nontumorigenic MCF-10A cells, can be accurately identified by the proposed "OR-AND" gated DNA logic platform, indicating the prospect of this simple and universal design in accurate cancer screening.


Asunto(s)
ADN , ADN/genética , Fluorescencia , Proteínas de la Membrana , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Mucina-1 , Humanos , Línea Celular Tumoral
14.
Anal Chem ; 95(29): 11091-11098, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37439630

RESUMEN

The construction of low-fouling biosensors for assaying biomarkers in complex biological samples remains a challenge, and the key limitation is the lack of effective anti-fouling materials. Inspired by the biomimetic process of protein phosphorylation, we herein designed a new phosphorylated peptide modified with the dihydrogen phosphate (-PO4H2) group, which significantly increased the hydrophilicity and anti-fouling capability of the peptide when compared with natural and normal peptides. Molecular simulation (MS) illustrated that, compared with the -COOH and -NH2 groups, the -PO4H2 group formed the most numbers of hydrogen bonds and stronger hydrogen bonds with water molecules. As a result, the PO4H2-oligopeptide was proved by MS to be able to attract the greatest number of water molecules, so as to form a compact layer of H2O to resist further adsorption of nonspecific biomolecules. The modification of electrodes with the designed PO4H2-oligopeptides, in addition to the adoption of neutral peptide nucleic acids (PNAs) as the sensing probes, ensured the fabrication of anti-fouling electrochemical biosensors capable of detecting nucleic acids in complex saliva. The constructed anti-fouling biosensor was able to detect the nucleic acid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in undiluted saliva, with a wide linear response range (0.01 pM-0.01 µM) and a low limit of detection (LOD) of 3.4 fM (S/N = 3). The phosphorylation of oligopeptides offers an effective strategy to designing ultra-hydrophilic peptides suitable for the construction of promising anti-biofouling biosensors and bioelectronics.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , Humanos , Incrustaciones Biológicas/prevención & control , Fosforilación , Saliva , SARS-CoV-2 , Péptidos/química , Oligopéptidos , Técnicas Electroquímicas
15.
Anal Chem ; 95(24): 9388-9395, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37279075

RESUMEN

Strategies for achieving tumor-specific molecular imaging based on signal amplification hold great potential for evaluating the risk of tumor metastasis and progression. However, traditional amplification strategies are still constrained with limited tumor specificity because of the off-tumor signal leakage. Herein, an endogenous enzyme-activated autonomous-motion DNAzyme signal amplification strategy (E-DNAzyme) was rationally designed for tumor-specific molecular imaging with improved spatial specificity. The sensing function of E-DNAzyme can be specifically activated by the overexpressed apurinic/apyrimidinic endonuclease 1 (APE1) in the cytoplasm of tumor cells instead of normal cells, ensuring the tumor cell-specific molecular imaging with improved spatial specificity. Of note, benefiting from the target analogue-triggered autonomous motion of the DNAzyme signal amplification strategy, the detection limit can be decreased by approx. ∼7.8 times. Moreover, the discrimination ratio of tumor/normal cells of the proposed E-DNAzyme was ∼3.44-fold higher than the traditional amplification strategy, indicating the prospect of this universal design for tumor-specific molecular imaging.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Imagen Molecular , Técnicas Biosensibles/métodos
16.
Anal Chem ; 95(8): 4077-4085, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787389

RESUMEN

Herein, by directly limiting the reaction space, an ingenious three-dimensional (3D) DNA walker (IDW) with high walking efficiency is developed for rapid and sensitive detection of miRNA. Compared with the traditional DNA walker, the IDW immobilized by the DNA tetrahedral nanostructure (DTN) brings stronger kinetic and thermodynamic favorability resulting from its improved local concentration and space confinement effect, accompanied by a quite faster reaction speed and much better walking efficiency. Once traces of target miRNA-21 react with the prelocked IDW, the IDW could be largely activated and walk on the interface of the electrode to trigger the cleavage of H2 with the assistance of Mg2+, resulting in the release of amounts of methylene blue (MB) labeled on H2 from the electrode surface and the obvious decrease of the electrode signal. Impressively, the IDW reveals a conversion efficiency as high as 9.33 × 108 in 30 min with a much fast reaction speed, which is at least five times beyond that of typical DNA walkers. Therefore, the IDW could address the inherent challenges of the traditional DNA walker easily: slow walking speed and low efficiency. Notably, the IDW as a DNA nanomachine was utilized to construct a sensitive sensing platform for rapid miRNA-21 detection with a limit of detection (LOD) of 19.8 aM and realize the highly sensitive assay of biomarker miRNA-21 in the total RNA lysates of cancer cell. The strategy thus helps in the design of a versatile nucleic acid conversion and signal amplification approach for practical applications in the areas of biosensing assay, DNA nanotechnology, and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanoestructuras , MicroARNs/genética , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , ADN/química , Nanoestructuras/química , Límite de Detección
17.
Anal Chem ; 95(23): 8879-8888, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252785

RESUMEN

CRISPR/Cas12a has been believed to be powerful in molecular detection and diagnostics due to its amplified trans-cleavage feature. However, the activating specificity and multiple activation mechanisms of the Cas12a system are yet to be elucidated fully. Herein, a "synergistic activator effect" is discovered, which supports an activation mechanism that a synergistic incorporation of two short ssDNA activators can promote the trans-cleavage of CRISPR/Cas12a, while either of them is too short to work independently. As a proof-of-concept example, the synergistic activator-triggered CRISPR/Cas12a system has been successfully harnessed in the AND logic operation and the discrimination of single-nucleotide variants, requiring no signal conversion elements or other amplified enzymes. Moreover, a single-nucleotide specificity has been achieved for the detection of single-nucleotide variants by pre-introducing a synthetic mismatch between crRNA and the "helper" activator. The finding of "synergistic activator effect" not only provides deeper insight into CRISPR/Cas12a but also may facilitate its expanded application and power the exploration of the undiscovered properties of other CRISPR/Cas systems.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN de Cadena Simple , Nucleótidos , ARN Guía de Sistemas CRISPR-Cas
18.
Anal Chem ; 95(19): 7723-7734, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37133978

RESUMEN

Accurate identification of cancer cells is an essential prerequisite for cancer diagnosis and subsequent effective curative interventions. The logic-gate-assisted cancer imaging system that allows a comparison of expression levels between biomarkers, rather than just reading biomarkers as inputs, returns a more comprehensive logical output, improving its accuracy for cell identification. To fulfill this key criterion, we develop a compute-and-release logic-gated double-amplified DNA cascade circuit. This novel system, CAR-CHA-HCR, consists of a compute-and-release (CAR) logic gate, a double-amplified DNA cascade circuit (termed CHA-HCR), and a MnO2 nanocarrier. CAR-CHA-HCR, a novel adaptive logic system, is designed to logically output the fluorescence signals after computing the expression levels of intracellular miR-21 and miR-892b. Only when miR-21 is present and its expression level is above the threshold CmiR-21 > CmiR-892b, the CAR-CHA-HCR circuit performs a compute-and-release operation on free miR-21, thereby outputting enhanced fluorescence signals to accurately image positive cells. It is capable of comparing the relative concentrations of two biomarkers while sensing them, thus allowing accurate identification of positive cancer cells, even in mixed cell populations. Such an intelligent system provides an avenue for highly accurate cancer imaging and is potentially envisioned to perform more complex tasks in biomedical studies.


Asunto(s)
MicroARNs , Neoplasias , Compuestos de Manganeso , Óxidos , ADN , MicroARNs/genética , Biomarcadores , Neoplasias/diagnóstico por imagen
19.
Small ; 19(10): e2206623, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534833

RESUMEN

Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene-based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low-grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g-1 by charging solid sample and 160.50 J g-1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene-based PPCMs with high gravimetric energy density by improving the photon energy storage.

20.
J Nanobiotechnology ; 21(1): 418, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951928

RESUMEN

Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.


Asunto(s)
Elastina , Péptidos , Elastina/química , Péptidos/química , Sistemas de Liberación de Medicamentos , Secuencia de Aminoácidos , Materiales Biocompatibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA