Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gene Ther ; 30(1-2): 101-106, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35474244

RESUMEN

Spinal muscular atrophy (SMA) is characterized by progressive weakness of skeletal and respiratory muscles. This study aimed to evaluate the prevalence of pre-existing anti adeno-associated virus serotype 9 antibody (AAV9-Ab) titers among infantile-onset SMA diagnosed infants pre-screened for treatment with AAV9-based onasemnogene abeparvovec, and to explore whether clinical and/or demographic characteristics are correlated with AAV9 Ab test results. This is a retrospective multicenter study of children diagnosed with 5q SMA younger than two years of age. The obtained data included demographic data, SMA type, SMN2 gene copy number, onset date, and results of AAV9-Ab test and of SMA prior treatments. Thirty-four patients were enrolled; six patients had positive results of AAV9-Ab (titer > 1:50) in the initial screening, 15 patients were re-tested for AAV9-Abs, of whom, three patients had seroreverted [1.5-4.5 months] between the two AAV9-Abs tests. One patient had seroconverted (5.5 months after the first AAV9-Abs test). The remaining 11 patients presented matching titer results in the two tests. No demographic/clinical factors were correlated to high AAV9-Abs titers (P > 0.05).We recommend AAV9-Ab re-tests to be performed until the age of 8 months, or, if 1.5 months or more have passed after the initial AAV9-Abs test.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Niño , Humanos , Lactante , Serogrupo , Dependovirus/genética , Atrofia Muscular Espinal/terapia , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/genética , Terapia Genética/métodos
2.
Acta Paediatr ; 112(4): 854-860, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36596294

RESUMEN

AIM: In Duchenne muscular dystrophy (DMD), lung disease contributes significantly to morbidity and mortality. This study aimed to assess the usefulness of various pulmonary function tests in evaluating DMD severity. METHODS: This retrospective study analysed lung function tests of patients with DMD-treated in the multidisciplinary respiratory neuromuscular clinic at Schneiders' Children Medical Center of Israel. Data were analysed according to age, ambulatory status and glucocorticoid treatment. RESULTS: Among 90 patients with DMD, 40/63 (63.5%) ambulatory patients and 22/27 (81.5%) nonambulatory patients successfully performed spirometry. Significant annual declines were demonstrated among nonambulatory patients, in percentile predicted forced vital capacity (3.8%) and in total lung capacity (5.5%) per year. The decline correlated with age and loss of ambulation but not with steroid treatment. Peak cough flow values were randomly distributed and did not correlate with age, ambulation or treatment. In nonambulatory patients, transcutaneous carbon dioxide measurement correlated significantly with age (r = 0.55, p = 0.02). CONCLUSION: Forced vital capacity, total lung capacity and transcutaneous carbon dioxide correlated with the clinical severity of disease in children with DMD. These measures may be useful in follow-up and clinical trials. A comparable correlation was not found for peak cough flow.


Asunto(s)
Tos , Distrofia Muscular de Duchenne , Niño , Humanos , Estudios Retrospectivos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Dióxido de Carbono/uso terapéutico , Pruebas de Función Respiratoria , Capacidad Vital
3.
BMC Biol ; 20(1): 40, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139855

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) is present at high copy numbers in animal cells, and though characterized by a single haplotype in each individual due to maternal germline inheritance, deleterious mutations and intact mtDNA molecules frequently co-exist (heteroplasmy). A number of factors, such as replicative segregation, mitochondrial bottlenecks, and selection, may modulate the exitance of heteroplasmic mutations. Since such mutations may have pathological consequences, they likely survive and are inherited due to functional complementation via the intracellular mitochondrial network. Here, we hypothesized that compromised mitochondrial fusion would hamper such complementation, thereby affecting heteroplasmy inheritance. RESULTS: We assessed heteroplasmy levels in three Caenorhabditis elegans strains carrying different heteroplasmic mtDNA deletions (ΔmtDNA) in the background of mutant mitofusin (fzo-1). Animals displayed severe embryonic lethality and developmental delay. Strikingly, observed phenotypes were relieved during subsequent generations in association with complete loss of ΔmtDNA molecules. Moreover, deletion loss rates were negatively correlated with the size of mtDNA deletions, suggesting that mitochondrial fusion is essential and sensitive to the nature of the heteroplasmic mtDNA mutations. Introducing the ΔmtDNA into a fzo-1;pdr-1;+/ΔmtDNA (PARKIN ortholog) double mutant resulted in a skewed Mendelian progeny distribution, in contrast to the normal distribution in the fzo-1;+/ΔmtDNA mutant, and severely reduced brood size. Notably, the ΔmtDNA was lost across generations in association with improved phenotypes. CONCLUSIONS: Taken together, our findings show that when mitochondrial fusion is compromised, deleterious heteroplasmic mutations cannot evade natural selection while inherited through generations. Moreover, our findings underline the importance of cross-talk between mitochondrial fusion and mitophagy in modulating the inheritance of mtDNA heteroplasmy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Patrón de Herencia , Mitocondrias/genética , Dinámicas Mitocondriales/genética
4.
Eur J Neurol ; 29(8): 2420-2430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510740

RESUMEN

BACKGROUND AND PURPOSE: The antisense oligonucleotide nusinersen (Spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase SMN protein expression. Nusinersen has improved ventilator-free survival and motor function outcomes in infantile onset forms of spinal muscular atrophy (SMA), treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients. METHODS: Thirty-four SMA patients were included. We applied next generation sequencing to identify microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers predicting response to nusinersen. Hammersmith Functional Motor Scale Expanded (HFMSE) was conducted at baseline and 6 months after initiation of nusinersen therapy to assess motor function. Patients changing by ≥3 or ≤0 points in the HFMSE total score were considered to be responders or nonresponders, respectively. RESULTS: Lower baseline levels of two muscle microRNAs (miR-206 and miR-133a-3p), alone or in combination, predicted the clinical response to nusinersen after 6 months of therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score. CONCLUSIONS: Lower miR-206 and miR-133a-3p in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinersen in later onset SMA patients and call for testing the ability of miRNAs to predict more sustained long-term benefit.


Asunto(s)
Biomarcadores Farmacológicos , MicroARNs , Oligonucleótidos , Atrofias Musculares Espinales de la Infancia , Biomarcadores Farmacológicos/líquido cefalorraquídeo , Humanos , MicroARNs/líquido cefalorraquídeo , Músculos , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/líquido cefalorraquídeo , Atrofias Musculares Espinales de la Infancia/terapia
5.
Eur J Neurol ; 29(4): 1174-1180, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935254

RESUMEN

BACKGROUND AND PURPOSE: Muscular A-type lamin-interacting protein (MLIP) is most abundantly expressed in cardiac and skeletal muscle. In vitro and animal studies have shown its regulatory role in myoblast differentiation and in organization of myonuclear positioning in skeletal muscle, as well as in cardiomyocyte adaptation and cardiomyopathy. We report the association of biallelic truncating variation in the MLIP gene with human disease in five individuals from two unrelated pedigrees. METHODS: Clinical evaluation and exome sequencing were performed in two unrelated families with elevated creatine kinase level. RESULTS: Family 1. A 6-year-old girl born to consanguineous parents of Arab-Muslim origin presented with myalgia, early fatigue after mild-to-moderate physical exertion, and elevated creatine kinase levels up to 16,000 U/L. Exome sequencing revealed a novel homozygous nonsense variant, c.2530C>T; p.Arg844Ter, in the MLIP gene. Family 2. Three individuals from two distantly related families of Old Order Amish ancestry presented with elevated creatine kinase levels, one of whom also presented with abnormal electrocardiography results. On exome sequencing, all showed homozygosity for a novel nonsense MLIP variant c.1825A>T; p.Lys609Ter. Another individual from this pedigree, who had sinus arrhythmia and for whom creatine kinase level was not available, was also homozygous for this variant. CONCLUSIONS: Our findings suggest that biallelic truncating variants in MLIP result in myopathy characterized by hyperCKemia. Moreover, these cases of MLIP-related disease may indicate that at least in some instances this condition is associated with muscle decompensation and fatigability during low-to-moderate intensity muscle exertion as well as possible cardiac involvement.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Adaptación Fisiológica , Animales , Humanos , Enfermedades Musculares/genética , Mialgia , Linaje
6.
Hum Mol Genet ; 28(20): 3369-3390, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31348492

RESUMEN

Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Necrosis/genética , Necrosis/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo
7.
PLoS Med ; 17(9): e1003222, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32956407

RESUMEN

BACKGROUND: Treatment with corticosteroids is recommended for Duchenne muscular dystrophy (DMD) patients to slow the progression of weakness. However, chronic corticosteroid treatment causes significant morbidities. Vamorolone is a first-in-class anti-inflammatory investigational drug that has shown evidence of efficacy in DMD after 24 weeks of treatment at 2.0 or 6.0 mg/kg/day. Here, open-label efficacy and safety experience of vamorolone was evaluated over a period of 18 months in trial participants with DMD. METHODS AND FINDINGS: A multicenter, open-label, 24-week trial (VBP15-003) with a 24-month long-term extension (VBP15-LTE) was conducted by the Cooperative International Neuromuscular Research Group (CINRG) and evaluated drug-related effects of vamorolone on motor outcomes and corticosteroid-associated safety concerns. The study was carried out in Canada, US, UK, Australia, Sweden, and Israel, from 2016 to 2019. This report covers the initial 24-week trial and the first 12 months of the VBP15-LTE trial (total treatment period 18 months). DMD trial participants (males, 4 to <7 years at entry) treated with 2.0 or 6.0 mg/kg/day vamorolone for the full 18-month period (n = 23) showed clinical improvement of all motor outcomes from baseline to month 18 (time to stand velocity, p = 0.012 [95% CI 0.010, 0.068 event/second]; run/walk 10 meters velocity, p < 0.001 [95% CI 0.220, 0.491 meters/second]; climb 4 stairs velocity, p = 0.001 [95% CI 0.034, 0.105 event/second]; 6-minute walk test, p = 0.001 [95% CI 31.14, 93.38 meters]; North Star Ambulatory Assessment, p < 0.001 [95% CI 2.702, 6.662 points]). Outcomes in vamorolone-treated DMD patients (n = 46) were compared to group-matched participants in the CINRG Duchenne Natural History Study (corticosteroid-naïve, n = 19; corticosteroid-treated, n = 68) over a similar 18-month period. Time to stand was not significantly different between vamorolone-treated and corticosteroid-naïve participants (p = 0.088; least squares [LS] mean 0.042 [95% CI -0.007, 0.091]), but vamorolone-treated participants showed significant improvement compared to group-matched corticosteroid-naïve participants for run/walk 10 meters velocity (p = 0.003; LS mean 0.286 [95% CI 0.104, 0.469]) and climb 4 stairs velocity (p = 0.027; LS mean 0.059 [95% CI 0.007, 0.111]). The vamorolone-related improvements were similar in magnitude to corticosteroid-related improvements. Corticosteroid-treated participants showed stunting of growth, whereas vamorolone-treated trial participants did not (p < 0.001; LS mean 15.86 [95% CI 8.51, 23.22]). Physician-reported incidences of adverse events (AEs) for Cushingoid appearance, hirsutism, weight gain, and behavior change were less for vamorolone than published incidences for prednisone and deflazacort. Key limitations to the study were the open-label design, and use of external comparators. CONCLUSIONS: We observed that vamorolone treatment was associated with improvements in some motor outcomes as compared with corticosteroid-naïve individuals over an 18-month treatment period. We found that fewer physician-reported AEs occurred with vamorolone than have been reported for treatment with prednisone and deflazacort, and that vamorolone treatment did not cause the stunting of growth seen with these corticosteroids. This Phase IIa study provides Class III evidence to support benefit of motor function in young boys with DMD treated with vamorolone 2.0 to 6.0 mg/kg/day, with a favorable safety profile. A Phase III RCT is underway to further investigate safety and efficacy. TRIAL REGISTRATION: Clinical trials were registered at www.clinicaltrials.gov, and the links to each trial are as follows (as provided in manuscript text): VBP15-002 [NCT02760264] VBP15-003 [NCT02760277] VBP15-LTE [NCT03038399].


Asunto(s)
Actividad Motora/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Pregnadienodioles/uso terapéutico , Corticoesteroides/efectos adversos , Niño , Preescolar , Progresión de la Enfermedad , Glucocorticoides/efectos adversos , Humanos , Masculino , Prednisona/uso terapéutico , Pregnadienodioles/metabolismo , Resultado del Tratamiento , Caminata/fisiología
8.
Muscle Nerve ; 61(6): 791-796, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32133669

RESUMEN

INTRODUCTION: Small-fiber neuropathy is rare in children. It has been associated with several autoimmune disorders, but there are no reports of an autoinflammatory etiology. METHODS: The data of four children/adolescents presenting with erythromelalgia and neuropathic pain from 2014 to 2019 were collected retrospectively from the electronic database of a pediatric medical center. RESULTS: Results of clinical and/or electrophysiological evaluation excluded large nerve fiber involvement. Skin biopsy results confirmed small-fiber neuropathy. According to genetic analysis, two patients were heterozygous and one was homozygous for mutations in the familial Mediterranean fever (MEFV) gene. Behcet disease was diagnosed in the fourth patient. Treatment with anti-interleukin-1 agents, intravenous immunoglobulin, and glucocorticoids was beneficial. DISCUSSION: The diagnosis of small-fiber neuropathy should be considered in children/adolescents presenting with erythromelalgia. A thorough investigation is required to reveal the underlying disorder. Clinicians should be alert to the peripheral neurological manifestations of autoinflammatory syndromes because effective treatments are available.


Asunto(s)
Eritromelalgia/complicaciones , Eritromelalgia/diagnóstico , Neuropatía de Fibras Pequeñas/complicaciones , Neuropatía de Fibras Pequeñas/diagnóstico , Adolescente , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/fisiopatología , Niño , Eritromelalgia/fisiopatología , Femenino , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico , Inflamación/fisiopatología , Estudios Retrospectivos , Neuropatía de Fibras Pequeñas/fisiopatología , Síndrome
9.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630425

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease typically caused by protein-truncating mutations that preclude synthesis of a functional dystrophin. Exonic deletions are the most common type of DMD lesion, however, whole exon duplications account for between 10-15% of all reported mutations. Here, we describe in vitro evaluation of antisense oligonucleotide-induced splice switching strategies to re-frame the transcript disrupted by a multi-exon duplication within the DMD gene. Phosphorodiamidate morpholino oligomers and phosphorodiamidate morpholino oligomers coupled to a cell penetrating peptide were evaluated in a Duchenne muscular dystrophy patient cell strain carrying an exon 14-17 duplication. Two strategies were employed; the conventional approach was to remove both copies of exon 17 in addition to exon 18, and the second strategy was to remove only the first copy of exon 17. Both approaches result in a larger than normal but in-frame DMD transcript, but surprisingly, the removal of only the first exon 17 appeared to be more efficient in restoring dystrophin, as determined using western blotting. The emergence of a normal sized DMD mRNA transcript that was not apparent in untreated samples may have arisen from back splicing and could also account for some of the dystrophin protein being produced.


Asunto(s)
Distrofina/genética , Exones/genética , Terapia Genética/métodos , Células Cultivadas , Distrofina/metabolismo , Humanos , Mutación INDEL/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología
10.
Nanomedicine ; 16: 34-44, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529791

RESUMEN

Glucocorticosteroids are the most efficacious anti-inflammatory agents and the gold standard treatment in Duchenne muscular dystrophy (DMD). However, their chronic use may lead to severe side effects. We evaluated the use of a novel injectable steroidal nano-drug in mdx mouse model of DMD by comparing the efficacy of nano-liposomes remotely loaded with the steroid prodrug, methylprednisolone hemisuccinate (MPS) with the same steroid as-is, in short (4-weeks) and long-term (58-weeks) treatments. Liposomal-MPS was selectively targeted to the mouse diaphragm, the most dystrophic muscle at early stage of the disease. The bioactivity of the steroidal nano-drug was evidenced by a significant decreased serum TGF-ß and reduced diaphragm macrophage infiltration after short-term treatment. In the long-term, the treatment with liposomal-MPS not only demonstrated improved muscle strength and mobility it also induced lower tibia and lumbar vertebrae osteoporosis indicating much lower bone related adverse effects.


Asunto(s)
Liposomas/química , Distrofia Muscular de Duchenne/tratamiento farmacológico , Esteroides/uso terapéutico , Animales , Creatina Quinasa/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Inflamación/sangre , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos mdx , Fuerza Muscular/efectos de los fármacos , Distrofia Muscular de Duchenne/sangre , Esteroides/química , Factor de Crecimiento Transformador beta/sangre
11.
Pharmacol Res ; 136: 140-150, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30219580

RESUMEN

We report a first-in-patient study of vamorolone, a first-in-class dissociative steroidal anti-inflammatory drug, in Duchenne muscular dystrophy. This 2-week, open-label Phase IIa multiple ascending dose study (0.25, 0.75, 2.0, and 6.0 mg/kg/day) enrolled 48 boys with Duchenne muscular dystrophy (4 to <7 years), with outcomes including clinical safety, pharmacokinetics and pharmacodynamic biomarkers. The study design included pharmacodynamic biomarkers in three contexts of use: 1. Secondary outcomes for pharmacodynamic safety (insulin resistance, adrenal suppression, bone turnover); 2. Exploratory outcomes for drug mechanism of action; 3. Exploratory outcomes for expanded pharmacodynamic safety. Vamorolone was safe and well-tolerated through the highest dose tested (6.0 mg/kg/day) and pharmacokinetics of vamorolone were similar to prednisolone. Using pharmacodynamic biomarkers, the study demonstrated improved safety of vamorolone versus glucocorticoids as shown by reduction of insulin resistance, beneficial changes in bone turnover (loss of increased bone resorption and decreased bone formation only at the highest dose level), and a reduction in adrenal suppression. Exploratory biomarkers of pharmacodynamic efficacy showed an anti-inflammatory mechanism of action and a beneficial effect on plasma membrane stability, as demonstrated by a dose-responsive decrease in serum creatine kinase activity. With an array of pre-selected biomarkers in multiple contexts of use, we demonstrate the development of the first dissociative steroid that preserves anti-inflammatory efficacy and decreases steroid-associated safety concerns. Ongoing extension studies offer the potential to bridge exploratory efficacy biomarkers to clinical outcomes.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Pregnadienodioles/farmacología , Pregnadienodioles/uso terapéutico , Administración Oral , Antiinflamatorios/sangre , Biomarcadores/sangre , Glucemia/análisis , Niño , Preescolar , Humanos , Hidrocortisona/sangre , Insulina/sangre , Masculino , Distrofia Muscular de Duchenne/metabolismo , Pregnadienodioles/sangre
12.
PLoS Genet ; 11(8): e1005388, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26247364

RESUMEN

Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.


Asunto(s)
Metiltransferasas/fisiología , Animales , Encéfalo/enzimología , Encéfalo/fisiopatología , Deleción Cromosómica , Retroalimentación Sensorial , Femenino , Masculino , Metilación , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fuerza Muscular , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Procesamiento Proteico-Postraduccional
13.
Hum Mol Genet ; 24(16): 4636-47, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26019235

RESUMEN

Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.


Asunto(s)
Epigénesis Genética , Histona Desacetilasas/biosíntesis , Debilidad Muscular/metabolismo , Miotonía Congénita/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/biosíntesis , Animales , Histona Desacetilasas/genética , Ratones , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación , Miotonía Congénita/genética , Miotonía Congénita/patología , Canal Liberador de Calcio Receptor de Rianodina/genética
14.
Am J Hum Genet ; 93(1): 6-18, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23746549

RESUMEN

Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Mutación Missense , Miopatías Nemalínicas/genética , Sustitución de Aminoácidos , Animales , Pueblo Asiatico/genética , Estudios de Cohortes , Mutación del Sistema de Lectura , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Proteínas Musculares/genética , Miopatías Nemalínicas/etnología , Miopatías Nemalínicas/patología , Linaje , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad , Pez Cebra/genética
15.
BMC Med Genet ; 17(1): 82, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852232

RESUMEN

BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Consanguinidad , Proteínas del Citoesqueleto/genética , Mutación Missense/genética , Adulto , Alelos , Animales , Encéfalo/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Preescolar , Fenómenos Electrofisiológicos , Genotipo , Humanos , Israel , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Gemelos Dicigóticos
16.
Blood ; 121(1): 129-35, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23149847

RESUMEN

CD59 deficiency is a common finding in RBCs and WBCs in patients with chronic hemolysis suffering from paroxysmal nocturnal hemoglobinuria in which the acquired mutation in the PIGA gene leads to membrane loss of glycosylphosphatidylinositol-anchored membrane proteins, including CD59. The objective of the present study was to elucidate the molecular basis of childhood familial chronic Coombs-negative hemolysis and relapsing polyneuropathy presenting as chronic inflammatory demyelinating polyradiculoneuropathy in infants of North-African Jewish origin from 4 unrelated families. A founder mutation was searched for using homozygosity mapping followed by exome sequencing. The expression of CD59, CD55, and CD14 was examined in blood cells by flow cytometry followed by Western blot of the CD59 protein. A homozygous missense mutation, p.Cys89Tyr in CD59, was identified in all patients. The mutation segregated with the disease in the families and had a carrier rate of 1:66 among Jewish subjects of North-African origin. The mutated protein was present in the patients' cells in reduced amounts and was undetectable on the membrane surface. Based on the results of the present study, we conclude that the Cys89Tyr mutation in CD59 is associated with a failure of proper localization of the CD59 protein in the cell surface. This mutation is manifested clinically in infancy by chronic hemolysis and relapsing peripheral demyelinating disease.


Asunto(s)
Anemia Hemolítica/genética , Antígenos CD59/genética , Hemoglobinuria/genética , Mutación Missense , Mutación Puntual , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/genética , Edad de Inicio , Secuencia de Aminoácidos , Anemia Hemolítica/sangre , Anemia Hemolítica/líquido cefalorraquídeo , Anemia Hemolítica/etnología , Antígenos CD59/metabolismo , Preescolar , Femenino , Efecto Fundador , Hemoglobinuria/sangre , Hemoglobinuria/líquido cefalorraquídeo , Hemoglobinuria/etnología , Humanos , Lactante , Judíos/genética , Libia/etnología , Masculino , Proteínas de la Membrana/análisis , Datos de Secuencia Molecular , Marruecos/etnología , Linaje , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/líquido cefalorraquídeo , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/etnología , Transporte de Proteínas
17.
Neurology ; 102(5): e208112, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38335499

RESUMEN

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Asunto(s)
Distrofia Muscular de Duchenne , Pregnadienodioles , Humanos , Masculino , Biomarcadores , Distrofia Muscular de Duchenne/tratamiento farmacológico , Prednisona/efectos adversos , Pregnadienodioles/efectos adversos , Preescolar , Niño
18.
Ann Neurol ; 71(5): 699-708, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22522482

RESUMEN

OBJECTIVE: Lamininα2-deficient congenital muscular dystrophy type 1A (MDC1A) is a cureless disease associated with severe disability and shortened lifespan. Previous studies have shown reduced fibrosis and restored skeletal muscle remodeling following treatment with losartan, an angiotensin II type I receptor blocker. We therefore evaluated the effect of losartan treatment in the dy(2J) /dy(2J) mouse model of MDC1A. METHODS: Homozygous dy(2J) /dy(2J) and control mice were treated with losartan or placebo for 12 weeks from 6 weeks of age. Outcome measures included hindlimb and forelimb muscle strength by Grip Strength Meter and quantitative muscle fibrosis parameters. Losartan's effects on transforming growth factor ß (TGF-ß) and mitogen-activated protein kinase (MAPK) signaling pathways were evaluated with Western blotting, immunofluorescence, and cytokine measurements. RESULTS: Losartan treatment was associated with significant impressive improvement in muscle strength and amelioration of fibrosis. Administration of losartan inhibited TGF-ß signaling pathway, resulting in decreased serum TGF-ß1 level and reduced downstream phosphorylated (P) Smad2/3 proteins. Moreover, losartan activated Smad7 protein, a key negative regulator of TGF-ß signaling. In addition, losartan treatment inhibited the MAPK cascade as shown by decreased expression of P-p38 MAPK, P-c-jun-N-terminal kinase, and P-extracellular signal-regulated kinases 1 and 2 in the treated mice. INTERPRETATION: Losartan, a commonly prescribed US Food and Drug Administration-approved medication for hypertension, demonstrated clinical improvement and amelioration of fibrosis in the dy(2J) /dy(2J) mouse model of MDC1A via TGF-ß and MAPK signaling pathways. The results of this study support pursuing a clinical trial of losartan treatment in children with MDC1A.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Losartán/uso terapéutico , Fuerza Muscular/efectos de los fármacos , Distrofias Musculares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Laminina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología
19.
Pediatr Neurol ; 144: 60-68, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149951

RESUMEN

BACKGROUND: Onasemnogene abeparvovec-xioi (OA) has been available since 2019 as a gene replacement therapy for individuals with spinal muscular atrophy (SMA) under age two years. We aim to expand upon the sparse knowledge about its safety and clinical efficacy. METHODS: The clinical outcome data of all the individuals with SMA who were treated with gene therapy in four tertiary hospitals in Israel were retrieved and analyzed. RESULTS: The study participants included 25 individuals who received the gene therapy between age 11 days and 23 months and whose median follow-up duration was 18.0 (interquartile range [IQR], 12.4 to 18.3) months. Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scores increased by a median (IQR) of 13 (8 to 20) points at the last follow-up compared with baseline. None of the patients experienced regression in motor abilities after gene therapy, which was generally well tolerated. There was gradual improvement in motor function, especially among presymptomatic patients (P ≤ 0.001) whose disease duration was shorter (≤8 months) before receiving gene therapy (P ≤ 0.001) and who did not experience recurrent infections and illnesses in the months following treatment (P ≤ 0.001). CONCLUSIONS: OA was well tolerated and led to favorable functional motor outcomes at six to 24 months after treatment initiation. Better progress in motor function was observed in individuals who received OA earlier and who were presymptomatic, irrespective of the SMN2 copy number or type. Our results further strengthen the clinical efficacy of OA and reinforce the importance of early recognition of SMA via newborn screening programs.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Lactante , Niño , Recién Nacido , Humanos , Preescolar , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Resultado del Tratamiento , Terapia Genética/efectos adversos , Tamizaje Neonatal
20.
Respir Med ; 209: 107143, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764497

RESUMEN

BACKGROUND: Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder. Despite increased survival due to novel therapies, morbidity from respiratory complications still persists. We aim to describe these patients' sputum cultures as an expression of chronic infectious airway disease. METHODS: Retrospective review of medical records of all children with SMA followed at the multidisciplinary respiratory neuromuscular clinic at Schneider Childrens' Medical Center of Israel over a 16-year period. Sputum cultures were obtained during routine visits or pulmonary exacerbations. RESULTS: Sixty-one SMA patients, aged 1 month to 21 years, were included in this cohort. Of these, sputum cultures were collected from 41 patients. Overall, 288 sputum cultures were obtained, and 98 (34%) were negative for bacterial growth. For the first culture taken from each patient, 12 out of 41 (29%) were sterile. The most common bacteria were pseudomonas aeruginosa (PSA) (38%) and staphylococcus aureus (19.6%). PSA was found in SMA type I patients more frequently than in type II patients (15/26 = 58% vs 4/13 = 31%, p < 0.001). PSA infection was positively associated with noninvasive ventilation, recurrent atelectasis, recurrent pneumonias, swallowing difficulties, but no significant association was found with cough assist machine usage. The incidence of positive cultures did not differ between those treated with Onasemnogene abeparvovec or Nusinersen compared to those without treatment, but the age of first PSA isolation was slightly older with Nusinersen treatment (p = 0.01). CONCLUSIONS: Airway bacterial colonization is common in SMA type I patients and is not decreased by Onasemnogene abeparvovec or Nusinersen treatment.


Asunto(s)
Atrofia Muscular Espinal , Neumonía , Atrofias Musculares Espinales de la Infancia , Humanos , Niño , Esputo , Atrofias Musculares Espinales de la Infancia/terapia , Respiración Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA