Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34709707

RESUMEN

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , COVID-19/metabolismo , Redes y Vías Metabólicas/genética , Pandemias , SARS-CoV-2/fisiología , Adenosina Monofosfato/uso terapéutico , Alanina/uso terapéutico , Animales , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , Conjuntos de Datos como Asunto , Desarrollo de Medicamentos , Reposicionamiento de Medicamentos , Interacciones Huésped-Patógeno , Humanos , ARN Interferente Pequeño , Análisis de Secuencia de ARN , Células Vero , Tratamiento Farmacológico de COVID-19
2.
Hum Mutat ; 41(2): 347-362, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31680375

RESUMEN

Precise identification of causative variants from whole-genome sequencing data, including both coding and noncoding variants, is challenging. The Critical Assessment of Genome Interpretation 5 SickKids clinical genome challenge provided an opportunity to assess our ability to extract such information. Participants in the challenge were required to match each of the 24 whole-genome sequences to the correct phenotypic profile and to identify the disease class of each genome. These are all rare disease cases that have resisted genetic diagnosis in a state-of-the-art pipeline. The patients have a range of eye, neurological, and connective-tissue disorders. We used a gene-centric approach to address this problem, assigning each gene a multiphenotype-matching score. Mutations in the top-scoring genes for each phenotype profile were ranked on a 6-point scale of pathogenicity probability, resulting in an approximately equal number of top-ranked coding and noncoding candidate variants overall. We were able to assign the correct disease class for 12 cases and the correct genome to a clinical profile for five cases. The challenge assessor found genes in three of these five cases as likely appropriate. In the postsubmission phase, after careful screening of the genes in the correct genome, we identified additional potential diagnostic variants, a high proportion of which are noncoding.


Asunto(s)
Estudios de Asociación Genética/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Genómica/métodos , Enfermedades Raras , Algoritmos , Alelos , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Modelos Teóricos , Fenotipo , Secuenciación Completa del Genoma , Flujo de Trabajo
3.
Hum Mutat ; 40(9): 1197-1201, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31334884

RESUMEN

Interpretation of genomic variation plays an essential role in the analysis of cancer and monogenic disease, and increasingly also in complex trait disease, with applications ranging from basic research to clinical decisions. Many computational impact prediction methods have been developed, yet the field lacks a clear consensus on their appropriate use and interpretation. The Critical Assessment of Genome Interpretation (CAGI, /'ka-je/) is a community experiment to objectively assess computational methods for predicting the phenotypic impacts of genomic variation. CAGI participants are provided genetic variants and make blind predictions of resulting phenotype. Independent assessors evaluate the predictions by comparing with experimental and clinical data. CAGI has completed five editions with the goals of establishing the state of art in genome interpretation and of encouraging new methodological developments. This special issue (https://onlinelibrary.wiley.com/toc/10981004/2019/40/9) comprises reports from CAGI, focusing on the fifth edition that culminated in a conference that took place 5 to 7 July 2018. CAGI5 was comprised of 14 challenges and engaged hundreds of participants from a dozen countries. This edition had a notable increase in splicing and expression regulatory variant challenges, while also continuing challenges on clinical genomics, as well as complex disease datasets and missense variants in diseases ranging from cancer to Pompe disease to schizophrenia. Full information about CAGI is at https://genomeinterpretation.org.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Algoritmos , Congresos como Asunto , Interpretación Estadística de Datos , Genómica , Humanos , Medicina de Precisión
4.
Hum Mutat ; 40(9): 1495-1506, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184403

RESUMEN

Thermodynamic stability is a fundamental property shared by all proteins. Changes in stability due to mutation are a widespread molecular mechanism in genetic diseases. Methods for the prediction of mutation-induced stability change have typically been developed and evaluated on incomplete and/or biased data sets. As part of the Critical Assessment of Genome Interpretation, we explored the utility of high-throughput variant stability profiling (VSP) assay data as an alternative for the assessment of computational methods and evaluated state-of-the-art predictors against over 7,000 nonsynonymous variants from two proteins. We found that predictions were modestly correlated with actual experimental values. Predictors fared better when evaluated as classifiers of extreme stability effects. While different methods emerging as top performers depending on the metric, it is nontrivial to draw conclusions on their adoption or improvement. Our analyses revealed that only 16% of all variants in VSP assays could be confidently defined as stability-affecting. Furthermore, it is unclear as to what extent VSP abundance scores were reasonable proxies for the stability-related quantities that participating methods were designed to predict. Overall, our observations underscore the need for clearly defined objectives when developing and using both computational and experimental methods in the context of measuring variant impact.


Asunto(s)
Biología Computacional/métodos , Metiltransferasas/química , Mutación , Fosfohidrolasa PTEN/química , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metiltransferasas/genética , Fosfohidrolasa PTEN/genética , Estabilidad Proteica
5.
Hum Mutat ; 40(9): 1330-1345, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31144778

RESUMEN

The Critical Assessment of Genome Interpretation-5 intellectual disability challenge asked to use computational methods to predict patient clinical phenotypes and the causal variant(s) based on an analysis of their gene panel sequence data. Sequence data for 74 genes associated with intellectual disability (ID) and/or autism spectrum disorders (ASD) from a cohort of 150 patients with a range of neurodevelopmental manifestations (i.e. ID, autism, epilepsy, microcephaly, macrocephaly, hypotonia, ataxia) have been made available for this challenge. For each patient, predictors had to report the causative variants and which of the seven phenotypes were present. Since neurodevelopmental disorders are characterized by strong comorbidity, tested individuals often present more than one pathological condition. Considering the overall clinical manifestation of each patient, the correct phenotype has been predicted by at least one group for 93 individuals (62%). ID and ASD were the best predicted among the seven phenotypic traits. Also, causative or potentially pathogenic variants were predicted correctly by at least one group. However, the prediction of the correct causative variant seems to be insufficient to predict the correct phenotype. In some cases, the correct prediction has been supported by rare or common variants in genes different from the causative one.


Asunto(s)
Trastorno del Espectro Autista/genética , Biología Computacional/métodos , Discapacidad Intelectual/genética , Análisis de Secuencia de ADN/métodos , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
6.
Hum Mutat ; 40(9): 1314-1320, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31140652

RESUMEN

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors in European populations do not translate to individuals of African descent because of the differences in allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of Genome Interpretation, participants were asked to predict VTE status in exome data from African American subjects. Participants were provided with 103 unlabeled exomes from patients treated with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had been treated for. Given the lack of training data, many participants opted to use unsupervised machine learning methods, clustering the exomes by variation in genes known to be associated with VTE. The best performing method using only VTE related genes achieved an area under the ROC curve of 0.65. Here, we discuss the range of methods used in the prediction of VTE from sequence data and explore some of the difficulties of conducting a challenge with known confounders. In addition, we show that an existing genetic risk score for VTE that was developed in European subjects works well in African Americans.


Asunto(s)
Secuenciación del Exoma/métodos , Tromboembolia Venosa/genética , Warfarina/administración & dosificación , Análisis por Conglomerados , Biología Computacional/métodos , Congresos como Asunto , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Curva ROC , Aprendizaje Automático no Supervisado , Tromboembolia Venosa/tratamiento farmacológico , Warfarina/uso terapéutico
7.
Hum Mutat ; 40(9): 1373-1391, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31322791

RESUMEN

Whole-genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state-of-the-art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Enfermedades no Diagnosticadas/diagnóstico , Adolescente , Niño , Preescolar , Simulación por Computador , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Enfermedades no Diagnosticadas/genética , Secuenciación Completa del Genoma
8.
Hum Mutat ; 40(9): 1530-1545, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301157

RESUMEN

Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.


Asunto(s)
Sustitución de Aminoácidos , Biología Computacional/métodos , Cistationina betasintasa/genética , Cistationina/metabolismo , Cistationina betasintasa/metabolismo , Homocisteína/metabolismo , Humanos , Fenotipo , Medicina de Precisión
9.
Hum Mutat ; 40(9): 1519-1529, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31342580

RESUMEN

The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge attracted 17 submissions from 10 groups. We observed that top models were able to predict the impact of missense mutations on enzymatic activity with Pearson's correlation coefficients of up to .61. We also observed that top methods were significantly more correlated with each other than they were with observed enzymatic activity values, which we believe speaks to the importance of sequence conservation across the different methods. Improved functional predictions on the VUS will help population-scale analysis of disease epidemiology and rare variant association analysis.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Biología Computacional/métodos , Mutación Missense , Acetilglucosaminidasa/genética , Humanos , Modelos Genéticos , Análisis de Regresión
10.
Hum Mutat ; 40(9): 1612-1622, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31241222

RESUMEN

The availability of disease-specific genomic data is critical for developing new computational methods that predict the pathogenicity of human variants and advance the field of precision medicine. However, the lack of gold standards to properly train and benchmark such methods is one of the greatest challenges in the field. In response to this challenge, the scientific community is invited to participate in the Critical Assessment for Genome Interpretation (CAGI), where unpublished disease variants are available for classification by in silico methods. As part of the CAGI-5 challenge, we evaluated the performance of 18 submissions and three additional methods in predicting the pathogenicity of single nucleotide variants (SNVs) in checkpoint kinase 2 (CHEK2) for cases of breast cancer in Hispanic females. As part of the assessment, the efficacy of the analysis method and the setup of the challenge were also considered. The results indicated that though the challenge could benefit from additional participant data, the combined generalized linear model analysis and odds of pathogenicity analysis provided a framework to evaluate the methods submitted for SNV pathogenicity identification and for comparison to other available methods. The outcome of this challenge and the approaches used can help guide further advancements in identifying SNV-disease relationships.


Asunto(s)
Neoplasias de la Mama/genética , Quinasa de Punto de Control 2/genética , Biología Computacional/métodos , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Neoplasias de la Mama/etnología , Estudios de Casos y Controles , Simulación por Computador , Femenino , Predisposición Genética a la Enfermedad , Humanos , Modelos Lineales , Persona de Mediana Edad , Estados Unidos/etnología , Secuenciación del Exoma
11.
PLoS Comput Biol ; 14(12): e1006540, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586388

RESUMEN

Mechanism is a widely used concept in biology. In 2017, more than 10% of PubMed abstracts used the term. Therefore, searching for and reasoning about mechanisms is fundamental to much of biomedical research, but until now there has been almost no computational infrastructure for this purpose. Recent work in the philosophy of science has explored the central role that the search for mechanistic accounts of biological phenomena plays in biomedical research, providing a conceptual basis for representing and analyzing biological mechanism. The foundational categories for components of mechanisms-entities and activities-guide the development of general, abstract types of biological mechanism parts. Building on that analysis, we have developed a formal framework for describing and representing biological mechanism, MecCog, and applied it to describing mechanisms underlying human genetic disease. Mechanisms are depicted using a graphical notation. Key features are assignment of mechanism components to stages of biological organization and classes; visual representation of uncertainty, ignorance, and ambiguity; and tight integration with literature sources. The MecCog framework facilitates analysis of many aspects of disease mechanism, including the prioritization of future experiments, probing of gene-drug and gene-environment interactions, identification of possible new drug targets, personalized drug choice, analysis of nonlinear interactions between relevant genetic loci, and classification of diseases based on mechanism.


Asunto(s)
Clasificación/métodos , Biología Computacional/métodos , Enfermedad/clasificación , Fenómenos Biológicos , Investigación Biomédica , Biología Computacional/normas , Bases de Datos Factuales , Humanos , Fenómenos Fisiológicos/fisiología
12.
Hum Mutat ; 38(9): 1169-1181, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28512736

RESUMEN

Compared with earlier more restricted sequencing technologies, identification of rare disease variants using whole-genome sequence has the possibility of finding all causative variants, but issues of data quality and an overwhelming level of background variants complicate the analysis. The CAGI4 SickKids clinical genome challenge provided an opportunity to assess the landscape of variants found in a difficult set of 25 unsolved rare disease cases. To address the challenge, we developed a three-stage pipeline, first carefully analyzing data quality, then classifying high-quality gene-specific variants into seven categories, and finally examining each candidate variant for compatibility with the often complex phenotypes of these patients for final prioritization. Variants consistent with the phenotypes were found in 24 out of the 25 cases, and in a number of these, there are prioritized variants in multiple genes. Data quality analysis suggests that some of the selected variants are likely incorrect calls, complicating interpretation. The data providers followed up on three suggested variants with Sanger sequencing, and in one case, a prioritized variant was confirmed as likely causative by the referring physician, providing a diagnosis in a previously intractable case.


Asunto(s)
Variación Genética , Genómica/métodos , Enfermedades Raras/genética , Niño , Predisposición Genética a la Enfermedad , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
13.
Hum Mutat ; 38(9): 1225-1234, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28512778

RESUMEN

Understanding the basis of complex trait disease is a fundamental problem in human genetics. The CAGI Crohn's Exome challenges are providing insight into the adequacy of current disease models by requiring participants to identify which of a set of individuals has been diagnosed with the disease, given exome data. For the CAGI4 round, we developed a method that used the genotypes from exome sequencing data only to impute the status of genome wide association studies marker SNPs. We then used the imputed genotypes as input to several machine learning methods that had been trained to predict disease status from marker SNP information. We achieved the best performance using Naïve Bayes and with a consensus machine learning method, obtaining an area under the curve of 0.72, larger than other methods used in CAGI4. We also developed a model that incorporated the contribution from rare missense variants in the exome data, but this performed less well. Future progress is expected to come from the use of whole genome data rather than exomes.


Asunto(s)
Enfermedad de Crohn/genética , Secuenciación del Exoma/métodos , Polimorfismo de Nucleótido Simple , Algoritmos , Área Bajo la Curva , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , Fenotipo
14.
Hum Mutat ; 38(9): 1201-1216, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28497567

RESUMEN

The use of gene panel sequence for diagnostic and prognostic testing is now widespread, but there are so far few objective tests of methods to interpret these data. We describe the design and implementation of a gene panel sequencing data analysis pipeline (VarP) and its assessment in a CAGI4 community experiment. The method was applied to clinical gene panel sequencing data of 106 patients, with the goal of determining which of 14 disease classes each patient has and the corresponding causative variant(s). The disease class was correctly identified for 36 cases, including 10 where the original clinical pipeline did not find causative variants. For a further seven cases, we found strong evidence of an alternative disease to that tested. Many of the potentially causative variants are missense, with no previous association with disease, and these proved the hardest to correctly assign pathogenicity or otherwise. Post analysis showed that three-dimensional structure data could have helped for up to half of these cases. Over-reliance on HGMD annotation led to a number of incorrect disease assignments. We used a largely ad hoc method to assign probabilities of pathogenicity for each variant, and there is much work still to be done in this area.


Asunto(s)
Enfermedad/clasificación , Secuenciación del Exoma/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional , Bases de Datos Genéticas , Enfermedad/genética , Predisposición Genética a la Enfermedad , Humanos , Modelos Moleculares , Mutación Missense , Fenotipo , Proteínas/química , Proteínas/genética
15.
Hum Mutat ; 38(9): 1109-1122, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544272

RESUMEN

CAGI (Critical Assessment of Genome Interpretation) conducts community experiments to determine the state of the art in relating genotype to phenotype. Here, we report results obtained using newly developed ensemble methods to address two CAGI4 challenges: enzyme activity for population missense variants found in NAGLU (Human N-acetyl-glucosaminidase) and random missense mutations in Human UBE2I (Human SUMO E2 ligase), assayed in a high-throughput competitive yeast complementation procedure. The ensemble methods are effective, ranked second for SUMO-ligase and third for NAGLU, according to the CAGI independent assessors. However, in common with other methods used in CAGI, there are large discrepancies between predicted and experimental activities for a subset of variants. Analysis of the structural context provides some insight into these. Post-challenge analysis shows that the ensemble methods are also effective at assigning pathogenicity for the NAGLU variants. In the clinic, providing an estimate of the reliability of pathogenic assignments is the key. We have also used the NAGLU dataset to show that ensemble methods have considerable potential for this task, and are already reliable enough for use with a subset of mutations.


Asunto(s)
Acetilglucosaminidasa/genética , Biología Computacional/métodos , Mutación Missense , Enzimas Ubiquitina-Conjugadoras/genética , Bases de Datos Genéticas , Humanos , Aprendizaje Automático , Fenotipo , Curva ROC , Reproducibilidad de los Resultados
16.
Hum Mutat ; 38(9): 1155-1168, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28397312

RESUMEN

The CAGI-4 Hopkins clinical panel challenge was an attempt to assess state-of-the-art methods for clinical phenotype prediction from DNA sequence. Participants were provided with exonic sequences of 83 genes for 106 patients from the Johns Hopkins DNA Diagnostic Laboratory. Five groups participated in the challenge, predicting both the probability that each patient had each of the 14 possible classes of disease, as well as one or more causal variants. In cases where the Hopkins laboratory reported a variant, at least one predictor correctly identified the disease class in 36 of the 43 patients (84%). Even in cases where the Hopkins laboratory did not find a variant, at least one predictor correctly identified the class in 39 of the 63 patients (62%). Each prediction group correctly diagnosed at least one patient that was not successfully diagnosed by any other group. We discuss the causal variant predictions by different groups and their implications for further development of methods to assess variants of unknown significance. Our results suggest that clinically relevant variants may be missed when physicians order small panels targeted on a specific phenotype. We also quantify the false-positive rate of DNA-guided analysis in the absence of prior phenotypic indication.


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Fenotipo
17.
Hum Mutat ; 38(9): 1042-1050, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28440912

RESUMEN

Correct phenotypic interpretation of variants of unknown significance for cancer-associated genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to test and define the state of the art of genotype-phenotype interpretation. Here, we present the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were assessed with a variety of accuracy measures for reliability in a medical context. Different assessment measures were combined in an overall ranking to provide more robust results. The R scripts used for assessment are publicly available from a GitHub repository for future use in similar assessment exercises. Despite a limited test-set size, our findings show a variety of results, with some methods performing significantly better. Methods combining different strategies frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy function measuring protein stability with an evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects can neutralize otherwise deleterious variants.


Asunto(s)
Biología Computacional/métodos , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Variación Genética , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/química , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Aprendizaje Automático , Estabilidad Proteica
18.
Hum Mutat ; 38(9): 1266-1276, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544481

RESUMEN

The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Área Bajo la Curva , Predisposición Genética a la Enfermedad , Proyecto Genoma Humano , Humanos , Fenotipo , Sitios de Carácter Cuantitativo
19.
Hum Mutat ; 38(9): 1182-1192, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28634997

RESUMEN

Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.


Asunto(s)
Trastorno Bipolar/genética , Enfermedad de Crohn/genética , Secuenciación del Exoma/métodos , Medicina de Precisión/métodos , Warfarina/uso terapéutico , Biología Computacional/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información , Variantes Farmacogenómicas , Fenotipo , Warfarina/farmacología
20.
BMC Genomics ; 16 Suppl 8: S4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110739

RESUMEN

BACKGROUND: There are now over 2000 loci in the human genome where genome wide association studies (GWAS) have found one or more SNPs to be associated with altered risk of a complex trait disease. At each of these loci, there must be some molecular level mechanism relevant to the disease. What are these mechanisms and how do they contribute to disease? RESULTS: Here we consider the roles of three primary mechanism classes: changes that directly alter protein function (missense SNPs), changes that alter transcript abundance as a consequence of variants close-by in sequence, and changes that affect splicing. Missense SNPs are divided into those predicted to have a high impact on in vivo protein function, and those with a low impact. Splicing is divided into SNPs with a direct impact on splice sites, and those with a predicted effect on auxiliary splicing signals. The analysis was based on associations found for seven complex trait diseases in the classic Wellcome Trust Case Control Consortium (WTCCC1) GWA study and subsequent studies and meta-analyses, collected from the GWAS catalog. Linkage disequilibrium information was used to identify possible candidate SNPs for involvement in disease mechanism in each of the 356 loci associated with these seven diseases. With the parameters used, we find that 76% of loci have at least of these mechanisms. Overall, except for the low incidence of direct impact on splice sites, the mechanisms are found at similar frequencies, with changes in transcript abundance the most common. But the distribution of mechanisms over diseases varies markedly, as does the fraction of loci with assigned mechanisms. Many of the implicated proteins have previously been suggested as relevant, but the specific mechanism assignments are new. In addition, a number of new disease relevant proteins are proposed. CONCLUSIONS: The high fraction of GWAS loci with proposed mechanisms suggests that these classes of mechanism play a major role. Other mechanism types, such as variants affecting expression of genes remote in the DNA sequence, will contribute in other loci. Each of the identified putative mechanisms provides a hypothesis for further investigation.


Asunto(s)
Expresión Génica , Estudio de Asociación del Genoma Completo , Enfermedades Metabólicas/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Empalme del ARN , Genotipo , Humanos , Fenotipo , Isoformas de Proteínas/genética , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA