Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(11): 2601-2627, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788685

RESUMEN

Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Envejecimiento/metabolismo , Transducción de Señal , Metabolismo Energético
2.
Nat Rev Mol Cell Biol ; 19(2): 77-92, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28792006

RESUMEN

Mitochondrial diseases affect one in 2,000 individuals; they can present at any age and they can manifest in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. Insight into this diversity is emerging from recent research that investigated defects in mitochondrial protein synthesis and mitochondrial DNA maintenance, which showed that many cell-specific stress responses are induced in response to mitochondrial dysfunction. Studying the molecular regulation of these stress responses might increase our understanding of the pathogenesis and variability of human mitochondrial diseases.


Asunto(s)
Mitocondrias/fisiología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/fisiología , Humanos , Orgánulos/patología , Orgánulos/fisiología , Estrés Oxidativo
3.
Nature ; 628(8009): 844-853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570685

RESUMEN

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Asunto(s)
Alelos , ADN Polimerasa gamma , Virus de la Encefalitis Transmitidos por Garrapatas , Herpesvirus Humano 1 , Tolerancia Inmunológica , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Ratones , Edad de Inicio , COVID-19/inmunología , COVID-19/virología , COVID-19/genética , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/inmunología , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Mutación , ARN Mitocondrial/inmunología , ARN Mitocondrial/metabolismo , SARS-CoV-2/inmunología
4.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579669

RESUMEN

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Asunto(s)
Argininosuccinatoliasa , Aciduria Argininosuccínica , Humanos , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Urea , Edición Génica/métodos
5.
Cell ; 148(6): 1145-59, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424226

RESUMEN

Mitochondria perform diverse yet interconnected functions, producing ATP and many biosynthetic intermediates while also contributing to cellular stress responses such as autophagy and apoptosis. Mitochondria form a dynamic, interconnected network that is intimately integrated with other cellular compartments. In addition, mitochondrial functions extend beyond the boundaries of the cell and influence an organism's physiology by regulating communication between cells and tissues. It is therefore not surprising that mitochondrial dysfunction has emerged as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders. We provide a current view of how mitochondrial functions impinge on health and disease.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Animales , Apoptosis , Autofagia , Humanos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
6.
Pediatr Res ; 95(1): 102-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37563452

RESUMEN

BACKGROUND: The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS: We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS: We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS: The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT: Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.


Asunto(s)
Encefalopatías , Enfermedades del Sistema Nervioso , Neurología , Síndrome de Rett , Recién Nacido , Humanos , Niño , Adolescente , Enfermedades del Sistema Nervioso/genética , Fenotipo , Espastina/genética , Proteínas de Unión al ARN/genética
7.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443317

RESUMEN

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Asunto(s)
Cerebelo/anomalías , Discapacidades del Desarrollo/genética , Distonía/genética , Complejo Mediador/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Catarata/genética , Niño , Preescolar , Epilepsia/genética , Variación Genética , Humanos , Lactante , Fenotipo , Secuenciación del Exoma
8.
Hum Mol Genet ; 28(4): 639-649, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30358850

RESUMEN

Dysfunction of mitochondrial translation is an increasingly important molecular cause of human disease, but structural defects of mitochondrial ribosomal subunits are rare. We used next-generation sequencing to identify a homozygous variant in the mitochondrial small ribosomal protein 14 (MRPS14, uS14m) in a patient manifesting with perinatal hypertrophic cardiomyopathy, growth retardation, muscle hypotonia, elevated lactate, dysmorphy and mental retardation. In skeletal muscle and fibroblasts from the patient, there was biochemical deficiency in complex IV of the respiratory chain. In fibroblasts, mitochondrial translation was impaired, and ectopic expression of a wild-type MRPS14 cDNA functionally complemented this defect. Surprisingly, the mutant uS14m was stable and did not affect assembly of the small ribosomal subunit. Instead, structural modeling of the uS14m mutation predicted a disruption to the ribosomal mRNA channel.Collectively, our data demonstrate pathogenic mutations in MRPS14 can manifest as a perinatal-onset mitochondrial hypertrophic cardiomyopathy with a novel molecular pathogenic mechanism that impairs the function of mitochondrial ribosomes during translation elongation or mitochondrial mRNA recruitment rather than assembly.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Ribosómicas/genética , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Acidosis Láctica/patología , Secuencia de Aminoácidos/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Niño , Preescolar , Complejo IV de Transporte de Electrones/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/patología , Mutación , Linaje
9.
Hum Mol Genet ; 28(2): 258-268, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30285085

RESUMEN

Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Cardiomiopatías/enzimología , Alanina-ARNt Ligasa/genética , Cardiomiopatías/genética , Enfermedades en Gemelos/genética , Estabilidad de Enzimas , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Lactante , Ácido Láctico , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Linaje , Insuficiencia Respiratoria/enzimología
10.
Hum Genet ; 140(11): 1593-1609, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33835239

RESUMEN

We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6-12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-ß (Aß). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aß deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aß accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration.


Asunto(s)
Enfermedades de los Perros/genética , Epilepsia/veterinaria , Metaloendopeptidasas/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/veterinaria , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades de los Perros/patología , Perros , Epilepsia/genética , Femenino , Masculino , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Consumo de Oxígeno , Linaje , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
11.
J Inherit Metab Dis ; 44(2): 469-480, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32857451

RESUMEN

The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first-line diagnostic investigations in mitochondrial disease complementing muscle biopsy.


Asunto(s)
ADN Mitocondrial/genética , Factores de Crecimiento de Fibroblastos/genética , Factor 15 de Diferenciación de Crecimiento/genética , Enfermedades Mitocondriales/genética , Adolescente , Adulto , Biomarcadores/sangre , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/sangre , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Adulto Joven
13.
Hum Mol Genet ; 26(17): 3352-3361, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645153

RESUMEN

Leigh syndrome is a severe infantile encephalopathy with an exceptionally variable genetic background. We studied the exome of a child manifesting with Leigh syndrome at one month of age and progressing to death by the age of 2.4 years, and identified novel compound heterozygous variants in PNPT1, encoding the polynucleotide phosphorylase (PNPase). Expression of the wild type PNPT1 in the subject's myoblasts functionally complemented the defects, and the pathogenicity was further supported by structural predictions and protein and RNA analyses. PNPase is a key enzyme in mitochondrial RNA metabolism, with suggested roles in mitochondrial RNA import and degradation. The variants were predicted to locate in the PNPase active site and disturb the RNA processing activity of the enzyme. The PNPase trimer formation was not affected, but specific RNA processing intermediates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments, accumulated in the subject's myoblasts. Mitochondrial RNA processing mediated by the degradosome consisting of hSUV3 and PNPase is poorly characterized, and controversy on the role and location of PNPase within human mitochondria exists. Our evidence indicates that PNPase activity is essential for the correct maturation of the ND6 transcripts, and likely for the efficient removal of degradation intermediates. Loss of its activity will result in combined respiratory chain deficiency, and a classic respiratory chain-deficiency-associated disease, Leigh syndrome, indicating an essential role for the enzyme for normal function of the mitochondrial respiratory chain.


Asunto(s)
Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Enfermedad de Leigh/genética , Preescolar , Exoma , Exorribonucleasas/química , Femenino , Expresión Génica , Humanos , Lactante , Recién Nacido , Enfermedad de Leigh/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Polirribonucleótido Nucleotidiltransferasa , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial
14.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693233

RESUMEN

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Genes Dominantes/genética , Enfermedades Mitocondriales/genética , Mutación , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Edad de Inicio , Arilamina N-Acetiltransferasa/genética , Niño , Preescolar , Transporte de Electrón/genética , Exoma/genética , Femenino , Humanos , Lactante , Recién Nacido , Isoenzimas/genética , Masculino , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo
15.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545679

RESUMEN

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Asunto(s)
Ataxia/genética , Autofagia/genética , Distonía/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Proteína Sequestosoma-1/deficiencia , Parálisis Supranuclear Progresiva/genética , Adolescente , Adulto , Edad de Inicio , Ataxia/complicaciones , Autofagosomas/metabolismo , Autofagosomas/patología , Niño , Trastornos del Conocimiento/genética , Disartria/complicaciones , Disartria/genética , Distonía/complicaciones , Femenino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/genética , Enfermedades Neurodegenerativas/complicaciones , Linaje , Fenotipo , ARN Mensajero/análisis , Proteína Sequestosoma-1/genética , Parálisis Supranuclear Progresiva/complicaciones , Adulto Joven
16.
J Med Genet ; 55(8): 515-521, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29602790

RESUMEN

BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/deficiencia , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Timidina Quinasa/deficiencia , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Genes Recesivos , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/mortalidad , Mutación , Fenotipo , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
17.
Neurogenetics ; 19(1): 49-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29350304

RESUMEN

Mutations in mitochondrial ATP synthase 6 (MT-ATP6) are a frequent cause of NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) or Leigh syndromes, especially a point mutation at nucleotide position 8993. M.8969G>A is a rare MT-ATP6 mutation, previously reported only in three individuals, causing multisystem disorders with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia or IgA nephropathy. We present two siblings with the m.8969G>A mutation and a novel, substantially milder phenotype with lactic acidosis, poor growth, and intellectual disability. Our findings expand the phenotypic spectrum and show that mtDNA mutations should be taken account also with milder, stable phenotypes.


Asunto(s)
Acidosis Láctica/genética , ADN Mitocondrial/genética , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Acidosis Láctica/complicaciones , Adolescente , Niño , Femenino , Trastornos del Crecimiento/complicaciones , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Linaje , Fenotipo , Mutación Puntual , Hermanos
18.
Biochemistry ; 56(9): 1227-1238, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28206745

RESUMEN

DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory ß-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/enzimología , Simulación de Dinámica Molecular , Dominio Catalítico , ADN/metabolismo , ADN Polimerasa gamma , Humanos , Mutación , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Estructura Secundaria de Proteína , Rotación
19.
Biochim Biophys Acta ; 1847(11): 1380-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26014347

RESUMEN

Decline in metabolism and regenerative potential of tissues are common characteristics of aging. Regeneration is maintained by somatic stem cells (SSCs), which require tightly controlled energy metabolism and genomic integrity for their homeostasis. Recent data indicate that mitochondrial dysfunction may compromise this homeostasis, and thereby contribute to tissue degeneration and aging. Progeroid Mutator mouse, accumulating random mtDNA point mutations in their SSCs, showed disturbed SSC homeostasis, emphasizing the importance of mtDNA integrity for stem cells. The mechanism involved changes in cellular redox-environment, including subtle increase in reactive oxygen species (H2O2and superoxide anion), which did not cause oxidative damage, but disrupted SSC function. Mitochondrial metabolism appears therefore to be an important regulator of SSC fate determination, and defects in it in SSCs may underlie premature aging. Here we review the current knowledge of mitochondrial contribution to SSC dysfunction and aging. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.


Asunto(s)
Envejecimiento , Mitocondrias/fisiología , Células Madre/fisiología , Animales , Homeostasis , Humanos , NAD/análisis , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/fisiología
20.
Am J Med Genet A ; 170(6): 1433-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26888048

RESUMEN

We report a 10-year-old girl presenting with severe neonatal hypertrophic cardiomyopathy (HCM), feeding difficulties, mildly abnormal facial features, and progressive skeletal muscle symptoms but with normal cognitive development. Targeted oligonucleotide-selective sequencing of 101 cardiomyopathy genes revealed the genetic diagnosis, and the mutation was verified by Sanger sequencing in the patient and her parents. To offer insights into the potential mechanism of patient mutation, protein structural analysis was performed using the resolved structure of human activated HRAS protein with bound GTP analogue (PDB id 5P21) in Discovery Studio 4.5 (Dassault Systèmes Biovia, San Diego, CA). The patient with hypertrophic cardiomyopathy and normal cognitive development was diagnosed with an HRAS mutation c.173C>T (p.T58I), a milder variant of Costello syndrome affecting a highly conserved amino acid, threonine 58. Our analysis suggests that the p.G12 mutations slow GTP hydrolysis rendering HRAS unresponsive to GTPase activating proteins, and resulting in permanently active state. The p.T58I mutation likely affects binding of guanidine-nucleotide-exchange factors, thereby promoting the active state but also allowing for slow inactivation. Patients with the HRAS mutation c.173C>T (p.T58I) might go undiagnosed because of the milder phenotype compared with other mutations causing Costello syndrome. We expand the clinical and molecular picture of the rare HRAS mutation by reporting the first case in Europe and the fourth case in the literature. Our protein structure analysis offers insights into the mechanism of the mildly activating p.T58I mutation. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Síndrome de Costello/diagnóstico , Síndrome de Costello/genética , Mutación , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Biomarcadores , Análisis Mutacional de ADN , Ecocardiografía , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Humanos , Recién Nacido , Masculino , Radiografía Torácica , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA