Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Neurosurg ; : 1-4, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967636

RESUMEN

Neurobrucellosis is a rare complication of brucella infection which presents as meningitis, meningoencephalitis, subdural empyema, brain abscess, myelitis, and radiculo- neuritis. We report the first case of neurobrucellosis presenting as an infected cerebellopontine cistern epidermoid cyst in a young immunocompetent male who presented with fever and acute raised intracranial pressure. MRI brain showed an extra-axial mass in the right cerebellopontine angle cistern with peripheral rim enhancement and diffusion restriction. Emergency surgery unveiled a well-encapsulated lesion containing thick pus and keratinous material, confirming an infected epidermoid cyst. Intriguingly, the culture revealed Brucella infection, but the source of the infection remained unclear.

2.
Physiol Genomics ; 53(11): 486-508, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612061

RESUMEN

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colon/metabolismo , Medios de Cultivo/farmacología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo , Transcriptoma/efectos de los fármacos , Calcitriol/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Medios de Cultivo/química , Combinación de Medicamentos , Escherichia coli , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Laminina/metabolismo , Laminina/farmacología , Organoides/virología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , RNA-Seq/métodos , Transcriptoma/genética , Virosis/metabolismo , Virosis/virología , Virus
3.
Neurol India ; 66(6): 1766-1770, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30504578

RESUMEN

BACKGROUND: Lumbar pedicle screw insertion involves a steep learning curve for novice spine surgeons and requires image guidance or navigation. Small volume centers may be handicapped by the lack of cost-effective user-friendly tools for preoperative planning, guidance, and decision making. OBJECTIVE: We describe a patient-specific interactive software module, pedicle screw simulator (PSS), for virtual preoperative planning to determine the entry point and visualize the trajectories of pedicle screws. MATERIALS AND METHODS: The PSS was coded in Python for use in an open source image processing software, 3D Slicer. Preoperative computed tomography (CT) data of each subject was loaded into this module. The entry-target (ET) mode calculates the ideal angle from the entry point through the widest section of the pedicle to the desired target in the vertebral body. The entry-angle (EA) mode projects the screw trajectory from the desired entry point at a desired angle. The performance of this software was tested using CT data from four subjects. RESULTS: PSS provided a quantitative and qualitative feedback preoperatively to the surgeon about the entry point and trajectories of pedicle screws. It also enabled the surgeons to visualize and predict the pedicle breach with various trajectories. CONCLUSION: This interactive software module aids in understanding and correcting the orientation of each vertebra in three-dimensions, to identify the ideal entry points, angles of insertion and trajectories for pedicle screw insertion to suit the local anatomy.


Asunto(s)
Vértebras Lumbares/cirugía , Tornillos Pediculares , Programas Informáticos , Fusión Vertebral/métodos , Humanos , Cuidados Preoperatorios , Periodo Preoperatorio
4.
Hum Mutat ; 36(10): 941-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26220709

RESUMEN

DECIPHER (https://decipher.sanger.ac.uk) is a web-based platform for secure deposition, analysis, and sharing of plausibly pathogenic genomic variants from well-phenotyped patients suffering from genetic disorders. DECIPHER aids clinical interpretation of these rare sequence and copy-number variants by providing tools for variant analysis and identification of other patients exhibiting similar genotype-phenotype characteristics. DECIPHER also provides mechanisms to encourage collaboration among a global community of clinical centers and researchers, as well as exchange of information between clinicians and researchers within a consortium, to accelerate discovery and diagnosis. DECIPHER has contributed to matchmaking efforts by enabling the global clinical genetics community to identify many previously undiagnosed syndromes and new disease genes, and has facilitated the publication of over 700 peer-reviewed scientific publications since 2004. At the time of writing, DECIPHER contains anonymized data from ∼250 registered centers on more than 51,500 patients (∼18000 patients with consent for data sharing and ∼25000 anonymized records shared privately). In this paper, we describe salient features of the platform, with special emphasis on the tools and processes that aid interpretation, sharing, and effective matchmaking with other data held in the database and that make DECIPHER an invaluable clinical and research resource.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Difusión de la Información/métodos , Enfermedades Raras/genética , Bases de Datos Genéticas , Variación Genética , Humanos , Fenotipo , Programas Informáticos , Interfaz Usuario-Computador , Navegador Web
5.
Hum Mutat ; 36(10): 915-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26295439

RESUMEN

There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Difusión de la Información/métodos , Enfermedades Raras/genética , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Estudios de Asociación Genética , Humanos , Programas Informáticos
6.
Hum Mol Genet ; 21(R1): R37-44, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962312

RESUMEN

Patients with developmental disorders often harbour sub-microscopic deletions or duplications that lead to a disruption of normal gene expression or perturbation in the copy number of dosage-sensitive genes. Clinical interpretation for such patients in isolation is hindered by the rarity and novelty of such disorders. The DECIPHER project (https://decipher.sanger.ac.uk) was established in 2004 as an accessible online repository of genomic and associated phenotypic data with the primary goal of aiding the clinical interpretation of rare copy-number variants (CNVs). DECIPHER integrates information from a variety of bioinformatics resources and uses visualization tools to identify potential disease genes within a CNV. A two-tier access system permits clinicians and clinical scientists to maintain confidential linked anonymous records of phenotypes and CNVs for their patients that, with informed consent, can subsequently be shared with the wider clinical genetics and research communities. Advances in next-generation sequencing technologies are making it practical and affordable to sequence the whole exome/genome of patients who display features suggestive of a genetic disorder. This approach enables the identification of smaller intragenic mutations including single-nucleotide variants that are not accessible even with high-resolution genomic array analysis. This article briefly summarizes the current status and achievements of the DECIPHER project and looks ahead to the opportunities and challenges of jointly analysing structural and sequence variation in the human genome.


Asunto(s)
Variaciones en el Número de Copia de ADN , Bases de Datos de Ácidos Nucleicos , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Congénitas/genética , Internet , Biología Computacional , Predisposición Genética a la Enfermedad , Variación Genética , Genoma Humano , Humanos , Difusión de la Información , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Brain Spine ; 4: 102736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510623

RESUMEN

Purpose: We studied the clinico-radiological features and treatment outcomes of patients with aggressive spinal haemangiomas. Methods: We undertook a retrospective review of 24 patients with aggressive spinal haemangiomas managed at our centre from 2004 to 2016. The cohort was divided into two groups. Group1 included patients managed from 2004 to 2009 while Group 2 was those treated between 2010 and 2016. Clinicoradiological features and treatment outcomes were studied. Results: Back pain (24/24) and myelopathy (18/24) were the most common presenting complaints. Over 80% (20/24) of patients, had involvement of the thoracic spine and more than 50% (13/24) had severe spasticity, being Nurick grade 4&5 at presentation. The various treatment modalities used were laminectomy with or without instrumented posterior fusion (10/24), corpectomy with instrumented fusion (10/24) and alcohol injection alone (4/24). Patients who were treated with surgery had significant clinical improvement at follow-up in both groups. Patients who underwent alcohol injection did not have any improvement in symptoms at follow-up. There was a change in our strategy in the later part of the series from a two staged anterior and posterior approach to a single staged posterior-only approach to address vertebral body disease with preoperative angioembolization. Conclusion: Haemangiomas are benign lesions with locally aggressive behavior in some cases. Results of conservative approaches such as alcohol injection in management of these lesions are discouraging. Aggressive surgical decompression combined with preoperative adjuncts such as angioembolization with or without stabilization reduces intra operative blood loss and results in good neurological recovery even in patients with severe myelopathy.

8.
Stem Cell Reports ; 18(1): 190-204, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36493779

RESUMEN

Mesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin. The present work uses integrated omics-based profiling, at different functional levels, to compare the anti-inflammatory, immunomodulatory, and angiogenic properties between MSCs from neonatal (umbilical cord MSC [UC-MSC]) and adult (adipose tissue MSC [AD-MSC], and bone marrow MSC [BM-MSC]) sources. Using multi-parametric analyses, we identified that UC-MSCs promote a more robust host innate immune response; in contrast, adult-MSCs appear to facilitate remodeling of the extracellular matrix (ECM) with stronger activation of angiogenic cascades. These data should help facilitate the standardization of source-specific MSCs, such that their regenerative signatures can be confidently used to target specific disease processes.


Asunto(s)
Células Madre Adultas , Células Madre Mesenquimatosas , Recién Nacido , Humanos , Proteoma , Transcriptoma , Perfilación de la Expresión Génica , Células de la Médula Ósea
9.
Front Cell Dev Biol ; 10: 1006295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313578

RESUMEN

In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.

10.
Tissue Eng Part C Methods ; 27(1): 12-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334213

RESUMEN

Stem cell-derived, organotypic in vitro models, known as organoids, have emerged as superior alternatives to traditional cell culture models due to their unparalleled ability to recreate complex physiological and pathophysiological processes. For this reason, they are attractive targets of tissue-engineering efforts, as constructs that include organoid technology would be expected to better simulate the many functions of the desired tissue or organ. While the 3D spheroidal architecture that is the default architecture of most organoid models may be preferred for some applications, 2D monolayer arrangements remain the preferred organization for many applications in tissue engineering. Therefore, in this work, we present a method to create monolayer organoid cultures on poly(ethylene glycol) (PEG) hydrogel scaffolds, using intestinal epithelial organoids (IEOs) as a proof-of-concept. Our process involves two steps: the hydrogel is first functionalized with a layer of poly(D-lysine) (PDL), which then allows the adsorption of pristine, unmodified basement membrane proteins. This approach successfully mediates the formation of IEO monolayer unlike conventional approaches that rely on covalent modification of the hydrogel surface with cell-adhesive peptides and basement membrane proteins. We show that these IEO monolayers recreate important physiological functions of the native intestinal epithelium, including multilineage differentiation, apical-basal polarization, and the ability to model infections with human norovirus. We also show coating of a scaffold mimicking intestinal villous topography, resulting in a 3D IEO monolayer. We expect that this protocol will be useful to researchers attempting to leverage the increased physiological relevance of organoid models to elevate the potential of their tissue-engineered constructs. Impact statement While organoids are physiologically superior models of biological functions than traditional cell cultures, their 3D spheroidal architecture is an obstacle to their incorporation in many tissue-engineering applications, which often prefer 2D monolayer arrangements of cells. For this reason, we developed a protocol to establish monolayer cultures of organoids on poly(ethylene glycol) hydrogels and demonstrate its utility using intestinal epithelial organoids as a proof-of-concept. We expect that this protocol will be of use to researchers creating engineered tissues for both regenerative medicine applications, as well as advanced in vitro experimental models.


Asunto(s)
Hidrogeles , Organoides , Materiales Biocompatibles , Técnicas de Cultivo de Célula , Humanos , Polietilenglicoles
11.
Acta Biomater ; 132: 245-259, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34280559

RESUMEN

Human intestinal enteroids (HIE) models have contributed significantly to our understanding of diarrheal diseases and other intestinal infections, but their routine culture conditions fail to mimic the mechanical environment of the native intestinal wall. Because the mechanical characteristics of the intestine significantly alter how pathogens interact with the intestinal epithelium, we used different concentrations of polyethylene glycol (PEG) to generate soft (~2 kPa), medium (~10 kPa), and stiff (~100 kPa) hydrogel biomaterial scaffolds. The height of HIEs cultured in monolayers atop these hydrogels was 18 µm whereas HIEs grown on rigid tissue culture surfaces (with stiffness in the GPa range) were 10 µm. Substrate stiffness also influenced the amount of enteroaggregative E. coli (EAEC strain 042) adhered to the HIEs. We quantified a striking difference in adherence pattern; on the medium and soft gels, the bacteria formed clusters of > 100 and even > 1000 on both duodenal and jejunal HIEs (such as would be found in biofilms), but did not on glass slides and stiff hydrogels. All hydrogel cultured HIEs showed significant enrichment for gene and signaling pathways related to epithelial differentiation, cell junctions and adhesions, extracellular matrix, mucins, and cell signaling compared to the HIEs cultured on rigid tissue culture surfaces. Collectively, these results indicate that the HIE monolayers cultured on the hydrogels are primed for a robust engagement with their mechanical environment, and that the soft hydrogels promote the formation of larger EAEC aggregates, likely through an indirect differential effect on mucus. STATEMENT OF SIGNIFICANCE: Enteroids are a form of in vitro experimental mini-guts created from intestinal stem cells. Enteroids are usually cultured in 3D within Matrigel atop rigid glass or plastic substrates, which fail to mimic the native intestinal mechanical environment. Because intestinal mechanics significantly alter how pathogens interact with the intestinal epithelium, we grew human intestinal enteroids in 2D atop polyethylene glycol (PEG) hydrogel scaffolds that were soft, medium, or stiff. Compared with enteroids grown in 2D atop glass or plastic, the enteroids grown on hydrogels were taller and more enriched in mechanobiology-related gene signaling pathways. Additionally, enteroids on the softest hydrogels supported adhesion of large aggregates of enteroaggregative E. coli. Thus, this platform offers a more biomimetic model for studying enteric diseases.


Asunto(s)
Escherichia coli , Mucosa Intestinal , Humanos , Hidrogeles , Intestinos , Células Madre
12.
Neurol India ; 68(2): 468-471, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32415026

RESUMEN

BACKGROUND: Thoracic spine has complex pedicle anatomy with a narrow canal diameter which makes pedicle screw insertion challenging. Fennell et al. have described a simple freehand technique of thoracic pedicle screw placement. We have tested the accuracy of Fennell technique using computed tomography-based (CT-based) simulation model with pedicle screw simulator (PSS). METHODS: Normal CT thoracic spine obtained from CT thorax data of five patients were used in the 3D slicer environment using PSS for simulation. Entry points and axial trajectory as described by Fennell et al. and a sagittal trajectory parallel to the superior endplate were used for simulating the freehand technique using EA (entry angle) mode in the PSS. An ideal trajectory through the midsection of the pedicle from the same entry point and a sagittal trajectory parallel to the superior endplate were simulated using the ET (Entry Target) mode. Angle predicted by the software for an ideal axial trajectory was compared with the Fennell technique and this angle difference was noted at all the levels. Presence of pedicle breach was noted while simulating the Fennell technique. RESULTS: A total of 240 thoracic pedicle screw insertions were simulated, 120 screws by each technique. A sagittal trajectory parallel to the superior endplate caused no pedicle breach in the cranial-caudal direction at any level. No medial or lateral breach was noted while using an axial trajectory of 30° at T1-T2 and 20° from T3-T10. A 20° axial trajectory at T11 and T12 resulted in a breach of the medial cortex and the ideal mean axial angles at T11 and T12 were 2.8° and 6.5°, respectively. CONCLUSIONS: Fennell technique was effectively simulated using PSS. A uniform entry point and sagittal trajectory parallel to the superior endplate serves as a useful guide for freehand insertion of thoracic pedicle screws. At T11 and 12, ideal axial trajectories are less than 10°.


Asunto(s)
Procedimientos Neuroquirúrgicos/métodos , Tornillos Pediculares , Vértebras Torácicas/cirugía , Simulación por Computador , Humanos , Tomografía Computarizada por Rayos X , Realidad Virtual
13.
Acta Biomater ; 105: 180-190, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31982591

RESUMEN

Intrinsically poor auto-regenerative repair of proteolytically-disrupted elastic matrix structures by resident SMCs in the wall of abdominal aortic aneurysms (AAAs) prevents growth arrest and regression of these wall expansions. Supporting their possible future use in a regenerative cell therapy for AAAs, in a prior study, we showed that bone marrow mesenchymal stem cell-derived Smooth Muscle Cells (BM-SMCs) secrete biological factors that have significant pro-elastogenic and anti-proteolytic effects on aneurysmal rat aortic SMCs (EaRASMCs) in non-contact co-cultures. We also identified one stable BM-SMC phenotype (cBM-SMC) generated by differentiating BM-MSCs on a 2D fibronectin substrate in the presence of PDGF (Platelet Derived Growth Factor) and TGF-ß1 (Transforming Growth Factor-ß1) that exhibited superior elastogenicity and pro-elastogenic/anti-proteolytic properties. In this study, we further investigated the ability of these cBM-SMCs to maintain these superior elastogenic properties in a 3D collagenous milieu alone and in co-culture with EaRASMC to evaluate their potential as an alternative cell source for cell therapy in AAA. Some of our key observations were higher contractility and greater amount of structurally intact elastin production in both standalone culture of cBM-SMCs as well as co-culture of cBM-SMCs with EaRASMCs as shown by VVG (Verhoeff-Van Gieson) staining and Pontamine Sky Blue labeling and lower MMP-9 protein expression in standalone culture in 3D collagenous environment. Our overall result indicates that cBM-SMCs possess the ability to provide elastogenic impetus in a 3D collagenous AAA milieu which is otherwise not conducive to elastogenesis. Therefore our study strongly suggest the utility of cBM-SMCs as a potential cell source for cell therapy to augment elastic matrix neo-assembly and fiber formation and attenuate proteolysis in a collagenous milieu that is evocative of the de-elasticized aneurysmal wall. STATEMENT OF SIGNIFICANCE: Abdominal aortic aneurysm (AAA) or ballooning of the aorta is one of the leading causes of cardiovascular disease (CVD) related death caused by significantly increased proteolytic activity in the aortic wall. Reversing pathophysiology of this condition is challenging due to intrinsically poor regeneration of elastin by aortic smooth muscle cells. Current management of AAA is limited to passive monitoring of the disease until it becomes large enough to receive surgical intervention and no drug based therapy currently exists. Cell based therapy can be a potential alternative treatment in this scenario because it provides elastogenic impetus to the aneurysmal SMCs, compensates for the dead SMCs and serves as a robust source of elastin while being delivered with minimal invasiveness. Hence this work will have significant impact in the field of tissue engineering and regenerative medicine.


Asunto(s)
Colágeno/farmacología , Elasticidad , Células Madre Mesenquimatosas/citología , Miocitos del Músculo Liso/citología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desmosina/metabolismo , Elastina/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fluorescencia , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley , Andamios del Tejido/química
14.
Physiol Rep ; 8(11): e14436, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32533648

RESUMEN

Pelvic organ prolapse (POP) decreases quality of life for many women, but its pathophysiology is poorly understood. We have previously shown that Lysyl oxidase-like 1 knockout (Loxl1 KO) mice reliably prolapse with age and increased parity, similar to women. Both this model and clinical studies also indicate that altered elastin metabolism in pelvic floor tissues plays a role in POP manifestation, although it is unknown if this is a cause or effect. Using Loxl1 KO mice, we investigated the effects of genetic absence of Loxl1, vaginal parity, and presence of POP on the expression of genes and proteins key to the production and regulation of elastic matrix. Cultured cells isolated from vaginal explants of mice were assayed with Fastin for elastic matrix, as well as RT-PCR and Western blot for expression of genes and proteins important for elastin homeostasis. Elastin synthesis significantly decreased with absence of LOXL1 and increased with parity (p < .001), but not with POP. Cells from prolapsed mice expressed significantly decreased MMP-2 (p < .05) and increased TIMP-4 (p < .05). The results suggest changes to elastin structure rather than amounts in prolapsed mice as well as poor postpartum elastin turnover, resulting in accumulation of damaged elastic fibers leading to abnormal tropoelastin deposition. POP may thus, be the result of an inability to initiate the molecular mechanisms necessary to clear and replace damaged elastic matrix in pelvic floor tissues after vaginal birth.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Elastina/metabolismo , Prolapso de Órgano Pélvico/metabolismo , Vagina/metabolismo , Aminoácido Oxidorreductasas/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Homeostasis , Ratones Endogámicos C57BL , Ratones Noqueados , Vagina/citología
15.
Nanomaterials (Basel) ; 10(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325974

RESUMEN

Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.

16.
Mol Biotechnol ; 42(1): 1-13, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19082769

RESUMEN

The Protein Data Bank (PDB) is the repository for three-dimensional structures of biological macromolecules, determined by experimental methods. The data in the archive is free and easily available via the Internet from any of the worldwide centers managing this global archive. These data are used by scientists, researchers, bioinformatics specialists, educators, students, and general audiences to understand biological phenomenon at a molecular level. Analysis of this structural data also inspires and facilitates new discoveries in science. This chapter describes the tools and methods currently used for deposition, processing, and release of data in the PDB. References to future enhancements are also included.


Asunto(s)
Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información/métodos , Proteínas/química , Biología Computacional , Documentación , Reproducibilidad de los Resultados
17.
Front Cardiovasc Med ; 6: 156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737648

RESUMEN

Objective: Aortic valve disease is commonly found in the elderly population. It is characterized by dysregulated extracellular matrix remodeling followed by extensive microcalcification of the aortic valve and activation of valve interstitial cells. The mechanism behind these events are largely unknown. Studies have reported expression of hypoxia inducible factor-1 alpha (HIF1α) in calcific nodules in aortic valve disease, therefore we investigated the effect of hypoxia on extracellular matrix remodeling in aged aortic valves. Approach and Results: Western blotting revealed elevated expression of HIF1α and the complex of matrix metalloprotease 9 (MMP9) and neutrophil gelatinase-associated lipocalin (NGAL) in aged porcine aortic valves cultured under hypoxic conditions. Consistently, immunofluorescence staining showed co-expression of MMP9 and NGAL in the fibrosa layer of these porcine hypoxic aortic valves. Gelatinase zymography demonstrated that the activity of MMP9-NGAL complex was significantly increased in aortic valves in 13% O2 compared to 20% O2. Importantly, the presence of ectopic elastic fibers in the fibrosa of hypoxic aortic valves, also detected in human diseased aortic valves, suggests altered elastin homeostasis due to hypoxia. Conclusion: This study demonstrates that hypoxia stimulates pathological extracellular matrix remodeling via expression of NGAL and MMP9 by valve interstitial cells.

18.
Methods Mol Biol ; 426: 81-101, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18542858

RESUMEN

The Protein Data Bank (PDB) is the repository for the three-dimensional structures of biological macromolecules, determined by experimental methods. The data in the archive are free and easily available via the Internet from any of the worldwide centers managing this global archive. These data are used by scientists, researchers, bioinformatics specialists, educators, students, and lay audiences to understand biological phenomena at a molecular level. Analysis of these structural data also inspires and facilitates new discoveries in science. This chapter describes the tools and methods currently used for deposition, processing, and release of data in the PDB. References to future enhancements are also included.


Asunto(s)
Bases de Datos de Proteínas , Documentación/métodos , Almacenamiento y Recuperación de la Información/métodos , Conformación Proteica , Proteínas/química
19.
Neuroradiol J ; 31(1): 47-49, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28665178

RESUMEN

Colloid cysts are the most common benign neoplasms of the anterior third ventricle, mostly located at the level of the foramen of Monro and can often manifest as sudden onset headache or loss of consciousness. These cysts often have a well-defined cyst wall, mucinous or watery intracystic fluid and have a fairly good plane with the surrounding parenchyma. Occasionally, intracystic haemorrhage can lead to xanthogranulomatous inflammatory changes within the cyst resulting in focal thickening of the cyst wall and adhesion to the surrounding structures. Here we describe a case of xanthogranulomatous colloid cyst which is a very rare variant of colloid cyst.


Asunto(s)
Quiste Coloide/diagnóstico por imagen , Granuloma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tercer Ventrículo , Xantomatosis/diagnóstico por imagen , Adulto , Quiste Coloide/patología , Quiste Coloide/cirugía , Medios de Contraste , Craneotomía , Diagnóstico Diferencial , Femenino , Granuloma/patología , Granuloma/cirugía , Humanos , Xantomatosis/patología , Xantomatosis/cirugía
20.
J Tissue Eng Regen Med ; 12(6): 1420-1431, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701914

RESUMEN

The neoassembly and maturation of elastic matrix is an important challenge for engineering small-diameter grafts for patients with peripheral artery disease. We have previously shown that hyaluronan oligomers and transforming growth factor-ß (elastogenic factors or EFs) promote elastogenesis in smooth muscle cell (SMC) culture. However, their combined effects on macrophages and inflammatory cells in vivo are unknown. This information is needed to use the body (e.g., peritoneal cavity) as an "in vivo bioreactor" to recruit autologous cells to implanted EF-functionalized scaffolds. In this study, we determined if peritoneal fluid cells respond to EFs like smooth muscle cells and if these responses differ between cells sourced during different stages of inflammation triggered by scaffold implantation. Electrospun poly(ε-caprolactone)/collagen conduits were implanted in the peritoneal cavity prior to peritoneal fluid collection at 3-42 days postimplantation. Cells from the fluid were cultured in vitro with and without EFs to determine their response. Their phenotype/behaviour was assessed with a DNA assay, quantitative real-time PCR, and immunofluorescence. The EFs reduced peritoneal cell proliferation, maintained cell contractility, and unexpectedly did not exhibit proelastic effects, which we attributed to differences in cell density. We found the greatest elastin deposition in regions containing a high cell density. Further, we found that cells isolated from the peritoneal cavity at longer times after conduit implantation responded better to the EFs and exhibited more CD31 expression than cells at an earlier time point. Overall, this study provides information about the potential use of EFs in vivo and can guide the design of future tissue-engineered vascular grafts.


Asunto(s)
Elasticidad , Ácido Hialurónico/farmacología , Peritoneo/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1/farmacología , Animales , Líquido Ascítico/citología , Bovinos , Recuento de Células , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA