Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 44(5): 2321-2334, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35678687

RESUMEN

In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and ß-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and ß-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.

2.
J Food Sci Technol ; 57(11): 3973-3979, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33071319

RESUMEN

The use of malolactic starter cultures, often offer no guarantee of microbiological success due to the chemical and physical factors (pH, ethanol, SO2, nutrient availability) that occur during the winemaking process. This study was born with the aim of improving the performance of the lactic acid bacteria used as a starter culture in the de-acidification of wines. Two commercial strains of Oenococcus oeni, were used. Was evaluated the effect of exogenous l-proline added during the bacterial growth, on the improvement of their survival in the presence of different ethanol concentrations and their ability to degrade l-malic acid in synthetic wine with the presence of 12% (v/v) and 13% (v/v) of ethanol. The results showed that l-proline improve ethanol tolerance and so the malolactic performances of O. oeni. This work represents an important strategy to ensure good vitality and improve the performance of the malolactic starter.

3.
ScientificWorldJournal ; 2016: 1917592, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446986

RESUMEN

Technological properties of two strains of Lactobacillus plantarum (B3 and B11) and one of Lactobacillus pentosus (B4), previously isolated from natural fermented green olives, have been studied in vitro. Acidifying ability, salt, temperature, and pH tolerances of all strains were found in the range reported for similar strains produced in Italy and optimal growth conditions were found to be 6.0-8.0 pH, 15-30°C temperature, and less than 6% NaCl. Moreover, all strains showed very good tolerance to common olive phenol content (0.3% total phenol) and high oleuropein-degrading capability. It was found that medium composition affected the bacterial oleuropein degradation. B11 strain grown in a nutrient-rich medium showed a lower oleuropein-degrading action than when it was cultivated in nutrient-poor medium. Furthermore, enzymatic activity assays revealed that oleuropein depletion did not correspond to an increase of hydroxytyrosol, evidencing that bacterial strains could efficiently degrade oleuropein via a mechanism different from hydrolysis.


Asunto(s)
Fermentación , Iridoides/metabolismo , Lactobacillus , Olea/microbiología , Microbiología Industrial , Glucósidos Iridoides , Italia
4.
World J Microbiol Biotechnol ; 30(8): 2299-305, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24817564

RESUMEN

In this study, 23 samples of traditional wines produced in Southern Italy were subjected to microbiological analyses with the aim to identify and biotype the predominant species of lactic acid bacilli. For this purpose, a multiple approach, consisting in the application of both phenotypic (API 50CHL test) and biomolecular methods (polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing) was used. The results showed that Lactobacillus plantarum was the predominant species, whereas Lb. brevis was detected in lower amount. In detail, out of 80 isolates 58 were ascribable to Lb. plantarum and 22 to Lb. brevis. Randomly amplified polymorphic DNA-polymerase chain reaction was used to highlight intraspecific variability among Lb. plantarum strains. Interestingly, the cluster analysis evidenced a relationship between different biotypes of Lb. plantarum and their origin, in terms of wine variety. Data acquired in this work show the possibility to obtain several malolactic fermentation starter cultures, composed by different Lb. plantarum biotypes, for their proper use in winemaking processes which are distinctive for each wine.


Asunto(s)
Lactobacillus plantarum/clasificación , Lactobacillus plantarum/aislamiento & purificación , Vino/microbiología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/análisis , Fermentación , Italia , Levilactobacillus brevis/clasificación , Levilactobacillus brevis/aislamiento & purificación , Malatos/metabolismo , Filogenia , Técnica del ADN Polimorfo Amplificado Aleatorio , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Front Microbiol ; 15: 1399968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725687

RESUMEN

Grape-associated microbial community is influenced by a combination of viticultural, climatic, pedological and anthropological factors, collectively known as terroir. Therefore, grapes of the same cultivar grown in different areas can be appreciated for their distinctive biogeographic characteristics. In our previous study, we showed that the phenotypic response of Aglianico and Cabernet grapevines from Molise and Sicily regions is significantly influenced by the prevailing pedoclimatic conditions, particularly soil physical properties. However, the scale at which microbial communities differ could be important in clarifying the concept of terroir, including whether it is linked to the grape variety present in a particular vineyard. To explore this further, in the research presented here, a comparative study on the fungal communities inhabiting the berry surfaces of Cabernet and Aglianico cultivars was conducted on different vineyards located in Southern Italy (Molise, Sicily and Campania regions, the first two of which had been involved in our previous study) by using high-throughput sequencing (HTS) and multivariate data analysis. The descriptive approach through relative abundance analysis showed the most abundant phyla (Ascomycota, Basidiomycota, and Chytridiomycota), families (Cladosporiaceae, Saccotheciaceae, Pleosporaceae, Saccharomycodaceae, Sporidiobolaceae, Didymellaceae, Filobasidiaceae, Bulleribasidiaceae, and Saccharomycetaceae) and genera (Cladosporium, Aureobasidium, Alternaria, Stemphylium and Filobasidium) detected on grape berries. The multivariate data analysis performed by using different packages (phyloseq, Vegan, mixOmics, microbiomeMarker and ggplot2) highlighted that the variable "vineyard location" significantly affect the fungal community, while the variable "grape variety" has no significant effect. Thus, some taxa are found to be part of specific vineyard ecosystems rather than specific grape varieties, giving additional information on the microbial contribution to wine quality, thanks to the presence of fermentative yeasts or, conversely, to the involvement in negative or detrimental roles, due to the presence of grape-deriving fungi implied in the spoilage of wine or in grapevine pathogenesis. In this connection, the main functions of core taxa fungi, whose role in the vineyard environment is still poorly understood, are also described.

6.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37507980

RESUMEN

In recent times, there has been a growing consumer interest in replacing animal foods with alternative plant-based products. Starting from this assumption, for its functional properties, soymilk fermented with lactic acid bacteria is gaining an important position in the food industry. In the present study, soymilk was fermented with Lactiplantibacillus plantarum LP95 at 37 °C, without the use of stabilizers as well as thickeners and acidity regulators. We evaluated the antioxidant capacity of fermented soymilk along with its enrichment in aglycone isoflavones. The conversion of isoflavone glucosides to aglycones (genistein, glycitein, and daidzein) was analyzed together with antioxidant activity (ABTS) measurements, lipid peroxidation measurements obtained by a thiobarbituric acid reactive substance (TBARS) assay, and apparent viscosity measurements. From these investigations, soymilk fermentation using Lp. plantarum LP95 as a starter significantly increased isoflavones' transformation to their aglycone forms. The content of daidzein, glycitein, and genistein increased after 24 h of fermentation, reaching levels of 48.45 ± 1.30, 5.10 ± 0.16, and 56.35 ± 1.02 µmol/100 g of dry weight, respectively. Furthermore, the antioxidant activity increased after 6 h with a reduction in MDA (malondialdehyde). The apparent viscosity was found to increase after 24 h of fermentation, while it slightly decreased, starting from 21 days of storage. Based on this evidence, Lp. plantarum LP95 appears to be a promising candidate as a starter for fermented soymilk production.

7.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628680

RESUMEN

Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.

8.
Vet Sci ; 9(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35622764

RESUMEN

The balance of the gut microbiome is important for the honey bee's growth and development, immune function and defense against pathogens. The use of a beneficial bacteria-based strategy for the prevention and biocontrol of American foulbrood (AFB) and European foulbrood (EFB) diseases in honey bees offers interesting prospects. Lactic acid bacteria (LAB) are common inhabitants of the gastrointestinal tract of the honey bee. Among LABs associated with bee gut microbiota, Lactiplantibacillus plantarum (previously Lactobacillus plantarum) and Apilactobacillus kunkeei (formerly classified as Lactobacillus kunkeei) are two of the most abundant species. In this study, four Lactiplantibacillus plantarum strains and four Apilactobacillus kunkeei strains, isolated from the gastrointestinal tract of honey bee (Apis mellifera L.) were selected for their in vitro inhibition ability of Paenibacillus larvae ATCC 9545 and Melissococccus plutonius ATCC 35311. In addition, these LABs have been characterized through some biochemical and functional characteristics: cell surface properties (hydrophobicity and auto-aggregation), carbohydrates assimilation and enzymatic activities. The antimicrobial, biochemical and cell surface properties of these LABs have been functional to their candidature as potential probiotics in beekeeping and for the biocontrol of AFB and EFB diseases.

9.
Microorganisms ; 10(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35208917

RESUMEN

Dietary probiotic supplementation has the potential to enhance the health of fish and their disease resistance. In this study, some properties of ten Lactiplantibacillus plantarum strains have been evaluated, for their potential use as probiotics in freshwater fish diet. In particular, antimicrobial activity, antioxidant activity, the potentiality to survive the gastrointestinal transit and persist in the intestine, were evaluated in vitro. The experimental tests were carried out at 15 °C and 30 °C to determine the suitability of these lactic acid bacteria to be used as probiotics in the diet of fish grown at different temperatures. The results demonstrated that the evaluated Lp. plantarum strains, which often have significant differences among themselves, are characterized by important functional characteristics such as cell surface properties (auto-aggregation and hydrophobicity), ability to produce antioxidant substances, capacity to survive in the presence of 0.3% bile salts and acidic environment (2.5 pH), antagonistic activity against some fish opportunistic pathogens (A. salmonicida, Ps. aeruginosa, E. coli and C. freundii) and other unwanted bacteria present in fish products (S. aureus and L. innocua). The outcomes suggest that these Lp. plantarum strains may be candidates as probiotics in warm- and cold-water aquaculture.

10.
Insects ; 13(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35323606

RESUMEN

Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper's management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee's well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee's intestinal bacterial community can become an indicator of the honey bee's health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.

11.
Life (Basel) ; 11(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34357039

RESUMEN

Knowledge of the composition of the gut microbiota in freshwater fish living in their natural habitat has taxonomic and ecological importance. Few reports have been produced on the composition of the gut microbiota and on the presence of LAB in the intestines of freshwater fish that inhabit river environments. In this study, we investigated the LAB community that was present in the gastrointestinal tract (GIT) of Mediterranean trout (Salmo macrostigma) that colonized the Biferno and Volturno rivers of the Molise region (Italy). The partial 16S rRNA gene sequences of these strains were determined for the species-level taxonomic placement. The phylogenetic analysis revealed that the isolated LABs belonged to seven genera (Carnobacterium, Enterococcus, Lactobacillus, Lactiplantibacillus, Vagococcus, Lactococcus, and Weissella). The study of the enzymatic activities showed that these LABs could contribute to the breakdown of polysaccharides, proteins, and lipids. In future studies, a greater understanding of how the LABs act against pathogens and trigger the fish immune response may provide practical means to engineer the indigenous fish microbiome and enhance disease control and fish health.

12.
J Fungi (Basel) ; 7(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066127

RESUMEN

Ascosphaera apis is an entomopathogenic fungus that affects honeybees. In stressful conditions, this fungus (due not only to its presence, but also to the combination of other biotic and abiotic stressors) can cause chalkbrood disease. In recent years, there has been increasing attention paid towards the use of lactic acid bacteria (LAB) in the honeybees' diets to improve their health, productivity and ability to resist infections by pathogenic microorganisms. The screening of 22 strains of Lactiplantibacillus plantarum, isolated from the gastrointestinal tracts of honeybees and beebread, led to the selection of five strains possessing high antagonistic activity against A. apis. This study focused on the antifungal activity of these five strains against A. apis DSM 3116 and DSM 3117 using different matrices: cell lysate, broth culture, cell-free supernatant and cell pellet. In addition, some functional properties and the antioxidant activity of the five L. plantarum strains were evaluated. All five strains exhibited high antagonistic activity against A. apis, good surface cellular properties (extracellular polysaccharide (EPS) production and biofilm formation) and antioxidant activity. Although preliminary, these results are encouraging, and in future investigations, the effectiveness of these bacteria as probiotics in honeybee nutrition will be tested in vivo in the context of an eco-friendly strategy for the biological control of chalkbrood disease.

13.
Microorganisms ; 8(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066358

RESUMEN

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.

14.
Antibiotics (Basel) ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722196

RESUMEN

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545were selected for further physiological and biochemical characterizations. In  particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.

15.
Foods ; 9(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113800

RESUMEN

Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (ß-glucosidase, ß-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.

16.
Microorganisms ; 8(4)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260418

RESUMEN

Malolactic fermentation (MLF) is a biological process that, in addition to deacidifying, also improves biological stability and changes the chemical and sensorial characteristics of wines. However, multiple biotic and abiotic factors, present in must and wine, make the onset and completion of MLF by indigenous malolactic bacteria or added commercial starters difficult. This work illustrates the metabolic and fermentative dynamics in winemaking Fiano wine, using a commercial starter of Saccharomyces cerevisiae and the selected strain Lactobacillus plantarum M10. In particular, an inoculum of malolactic starter was assessed at the beginning of alcoholic fermentation (early co-inoculum), at half alcoholic fermentation (late co-inoculum), and post alcoholic fermentation (sequential inoculum). The malolactic starter, before its use, was pre-adapted in sub-optimal growth conditions (pH 5.0). In sequential inoculum of the Lb. plantarum M10, even in a wine with high acidity, has confirmed its good technological and enzymatic characteristics, completing the MLF and enriching the wine with desirable volatile compounds.

17.
Antibiotics (Basel) ; 9(5)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443465

RESUMEN

: Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in "probiotic syrup", useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.

18.
Heliyon ; 5(5): e01727, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31193311

RESUMEN

In this study, the antimicrobial activity and the preservative properties of olive leaf extract (OLE) Olea europaea L. "Gentile di Larino" cultivar, were evaluated. The antibacterial activity was performed in vitro against spoilage bacterial strains: Pseudomonas fluorescens (ATCC 13525), Pseudomonas fragi (ATCC 4973), Pseudomonas putida (ATCC 17514), Brochotrix thermosphacta (ATCC 11509), Clostridium sporogenes (ATCC 11437), and Listeria innocua (ATCC 33090). About the preservative properties of OLE, they were evaluated in the marinating process of anchovy fillets. During the process have been determined the change of sensory characteristics and monitored these chemical parameters: pH, aw, salt content (% NaCl), thiobarbituric acid index (mgMA/Kg), total volatile basic nitrogen (mg/100g), and trimethylamine nitrogen (mg/100g). Moreover, were determined the spoilage bacteria on raw material, after 7 days and at the end of marination process, 22 days. The OLE exhibited an inhibitory effect against the bacteria tested. In marinated anchovy fillets, showed that the extract improves their shelf life without modifying the organoleptic characteristics of the product; this suggests that it could be considered in the food industry as a natural antioxidant and antimicrobial food additive.

19.
Recent Pat Biotechnol ; 9(3): 223-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27076091

RESUMEN

BACKGROUND: Sparkling wines produced by traditional method owe their characteristics to secondary fermentation and maturation that occur during a slow ageing in bottles. Yeast autolysis plays an important role during the sparkling wine aging. Using a combination of killer and sensitive yeasts is possible to accelerate yeast autolysis and reduce maturing time. METHODS: killer and sensitive Saccharomyces cerevisiae strains, separately and in co-cultures, were inoculated in base wine and bottled on pilot-plant scale. Commercial Saccaromyces bayanus strain was also investigated. Protein free amino acid and polysaccharides contents and sensory analysis were determined on the wine samples at 3, 6 and 9 months of aging. Yeast autolysis that occurs during the production of sparkling wines, obtained with co-cultures of killer and sensitive strains, has influenced free amino acids, total protein and polysaccharides content after 3 months aging time: sparkling wines, produced without the use of these yeasts, have reached the same results only after 9 months aging time. RESULTS: These results demonstrate that killer and sensitive yeasts in co-culture can accelerate the onset of autolysis in enological conditions, and has a positive effect on the quality of the aroma and flavor of sparkling wine. CONCLUSION: This paper offers an interesting biotechnological method to reduce production time of sparkling wine with economical benefits for the producers. We revised all patents relating to sparkling wine considering only those of interest for our study.


Asunto(s)
Autólisis/microbiología , Saccharomyces cerevisiae/fisiología , Vino/microbiología , Técnicas de Cocultivo/métodos , Fermentación/fisiología , Patentes como Asunto , Polisacáridos/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA