Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 620(7976): 1013-1017, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438527

RESUMEN

Pesticides are ubiquitous environmental pollutants negatively affecting ecosystem and human health1,2. About 3 Tg of pesticides are used annually in agriculture to protect crops3. How much of these pesticides remain on land and reach the aquifer or the ocean is uncertain. Monitoring their environmental fate is challenging, and a detailed picture of their mobility in time and space is largely missing4. Here, we develop a process-based model accounting for the hydrology and biogeochemistry of the 92 most used agricultural pesticide active substances to assess their pathways through the principal catchments of the world and draw a near-present picture of the global land and river budgets, including discharge to oceans. Of the 0.94 Tg net annual pesticide input in 2015 used in this study, 82% is biologically degraded, 10% remains as residue in soil and 7.2% leaches below the root zone. Rivers receive 0.73 Gg of pesticides from their drainage at a rate of 10 to more than 100 kg yr-1 km-1. By contrast to their fate in soil, only 1.1% of pesticides entering rivers are degraded along streams, exceeding safety levels (concentrations >1 µg l-1) in more than 13,000 km of river length, with 0.71 Gg of pesticide active ingredients released to oceans every year. Herbicides represent the prevalent pesticide residue on both land (72%) and river outlets (62%).


Asunto(s)
Agricultura , Monitoreo del Ambiente , Contaminantes Ambientales , Océanos y Mares , Plaguicidas , Ríos , Suelo , Humanos , Ecosistema , Plaguicidas/análisis , Ríos/química , Suelo/química , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Herbicidas/análisis , Contaminantes del Suelo/análisis , Contaminantes Ambientales/análisis
2.
Nature ; 586(7828): 248-256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028999

RESUMEN

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Asunto(s)
Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Agricultura , Atmósfera/química , Productos Agrícolas/metabolismo , Actividades Humanas , Internacionalidad , Nitrógeno/análisis , Nitrógeno/metabolismo
3.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741339

RESUMEN

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Asunto(s)
Ganado , Estiércol , Óxido Nitroso , Óxido Nitroso/análisis , Estiércol/análisis , Animales , Contaminantes Atmosféricos/análisis
4.
Glob Chang Biol ; 28(17): 5142-5158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642457

RESUMEN

Livestock contributes approximately one-third of global anthropogenic methane (CH4 ) emissions. Quantifying the spatial and temporal variations of these emissions is crucial for climate change mitigation. Although country-level information is reported regularly through national inventories and global databases, spatially explicit quantification of century-long dynamics of CH4 emissions from livestock has been poorly investigated. Using the Tier 2 method adopted from the 2019 Refinement to 2006 IPCC guidelines, we estimated CH4 emissions from global livestock at a spatial resolution of 0.083° (~9 km at the equator) during the period 1890-2019. We find that global CH4 emissions from livestock increased from 31.8 [26.5-37.1] (mean [minimum-maximum of 95% confidence interval) Tg CH4 yr-1 in 1890 to 131.7 [109.6-153.7] Tg CH4 yr-1 in 2019, a fourfold increase in the past 130 years. The growth in global CH4 emissions mostly occurred after 1950 and was mainly attributed to the cattle sector. Our estimate shows faster growth in livestock CH4 emissions as compared to the previous Tier 1 estimates and is ~20% higher than the estimate from FAOSTAT for the year 2019. Regionally, South Asia, Brazil, North Africa, China, the United States, Western Europe, and Equatorial Africa shared the majority of the global emissions in the 2010s. South Asia, tropical Africa, and Brazil have dominated the growth in global CH4 emissions from livestock in the recent three decades. Changes in livestock CH4 emissions were primarily associated with changes in population and national income and were also affected by the policy, diet shifts, livestock productivity improvement, and international trade. The new geospatial information on the magnitude and trends of livestock CH4 emissions identifies emission hotspots and spatial-temporal patterns, which will help to guide meaningful CH4 mitigation practices in the livestock sector at both local and global scales.


Asunto(s)
Ganado , Metano , Animales , Bovinos , Cambio Climático , Comercio , Internacionalidad
8.
Glob Chang Biol ; 22(12): 3859-3864, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27185416

RESUMEN

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.


Asunto(s)
Agricultura , Cambio Climático , Gases/análisis , Efecto Invernadero/prevención & control , Carbono/análisis , Efecto Invernadero/legislación & jurisprudencia , Cooperación Internacional , Metano/análisis , Política Pública , Suelo/química
9.
Glob Chang Biol ; 21(7): 2655-2660, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25580828

RESUMEN

We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr-1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr-1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr-1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.

10.
Sci Data ; 11(1): 413, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649341

RESUMEN

CROPGRIDS is a comprehensive global geo-referenced dataset providing area information for 173 crops for the year 2020, at a resolution of 0.05° (about 5.6 km at the equator). It represents a major update of the Monfreda et al. (2008) dataset (hereafter MRF), the most widely used geospatial dataset previously available, covering 175 crops with reference year 2000 at 10 km spatial resolution. CROPGRIDS builds on information originally provided in MRF and expands it using 27 selected published gridded datasets, subnational data of 52 countries obtained from National Statistical Offices, and the 2020 national-level statistics from FAOSTAT, providing more recent harvested and crop (physical) areas for 173 crops at regional, national, and global levels. The CROPGRIDS data advance the current state of knowledge on the spatial distribution of crops, providing useful inputs for modelling studies and sustainability analyses relevant to national and international processes.


Asunto(s)
Productos Agrícolas
11.
Nat Food ; 2(9): 724-732, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37117472

RESUMEN

Agriculture and land use are major sources of greenhouse gas (GHG) emissions but previous estimates were either highly aggregate or provided spatial details for subsectors obtained via different methodologies. Using a model-data integration approach that ensures full consistency between subsectors, we provide spatially explicit estimates of production- and consumption-based GHG emissions worldwide from plant- and animal-based human food in circa 2010. Global GHG emissions from the production of food were found to be 17,318 ± 1,675 TgCO2eq yr-1, of which 57% corresponds to the production of animal-based food (including livestock feed), 29% to plant-based foods and 14% to other utilizations. Farmland management and land-use change represented major shares of total emissions (38% and 29%, respectively), whereas rice and beef were the largest contributing plant- and animal-based commodities (12% and 25%, respectively), and South and Southeast Asia and South America were the largest emitters of production-based GHGs.

12.
Nat Food ; 2(11): 886-893, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-37117501

RESUMEN

Mitigating soil nitrous oxide (N2O) emissions is essential for staying below a 2 °C warming threshold. However, accurate assessments of mitigation potential are limited by uncertainty and variability in direct emission factors (EFs). To assess where and why EFs differ, we created high-resolution maps of crop-specific EFs based on 1,507 georeferenced field observations. Here, using a data-driven approach, we show that EFs vary by two orders of magnitude over space. At global and regional scales, such variation is primarily driven by climatic and edaphic factors rather than the well-recognized management practices. Combining spatially explicit EFs with N surplus information, we conclude that global mitigation potential without compromising crop production is 30% (95% confidence interval, 17-53%) of direct soil emissions of N2O, equivalent to the entire direct soil emissions of China and the United States combined. Two-thirds (65%) of the mitigation potential could be achieved on one-fifth of the global harvested area, mainly located in humid subtropical climates and across gleysols and acrisols. These findings highlight the value of a targeted policy approach on global hotspots that could deliver large N2O mitigation as well as environmental and food co-benefits.

13.
Nat Food ; 2(7): 529-540, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37117677

RESUMEN

Input-output estimates of nitrogen on cropland are essential for improving nitrogen management and better understanding the global nitrogen cycle. Here, we compare 13 nitrogen budget datasets covering 115 countries and regions over 1961-2015. Although most datasets showed similar spatiotemporal patterns, some annual estimates varied widely among them, resulting in large ranges and uncertainty. In 2010, global medians (in TgN yr-1) and associated minimum-maximum ranges were 73 (64-84) for global harvested crop nitrogen; 161 (139-192) for total nitrogen inputs; 86 (68-97) for nitrogen surplus; and 46% (40-53%) for nitrogen use efficiency. Some of the most uncertain nitrogen budget terms by country showed ranges as large as their medians, revealing areas for improvement. A benchmark nitrogen budget dataset, derived from central tendencies of the original datasets, can be used in model comparisons and inform sustainable nitrogen management in food systems.

14.
J Exp Bot ; 61(8): 2217-28, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20410317

RESUMEN

Projections of climate change impacts on global food supply are largely based on crop and pasture modelling. The consistency of these models with experimental data and their ability to simulate the effects of elevated CO(2) and of increased climate variability has been debated. The effects of high temperatures, of increased climate variability and of several limiting factors which interact with elevated CO(2) such as soil nutrients, pests and weeds are neither fully understood nor well implemented in leading models. Targeted model developments will be required based on experimental data concerning: (i) the role of extreme climatic events, (ii) the interactions between abiotic factors and elevated CO(2), (iii) the genetic variability in plant CO(2) and temperature responses, (iv) the interactions with biotic factors, and (v) the effects on harvest quality. To help make better use of the available knowledge, it is envisioned that future crop and pasture modelling studies will need to use a risk assessment approach by combining an ensemble of greenhouse gas emission (or stabilization) scenarios, of regional climate models and of crop and pasture models, as well as an ensemble of adaptation options concerning both management practices and species/varieties.


Asunto(s)
Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Poaceae/química , Poaceae/crecimiento & desarrollo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Modelos Teóricos , Poaceae/metabolismo , Temperatura
15.
Proc Natl Acad Sci U S A ; 104(50): 19703-8, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077404

RESUMEN

This article reviews the potential impacts of climate change on food security. It is found that of the four main elements of food security, i.e., availability, stability, utilization, and access, only the first is routinely addressed in simulation studies. To this end, published results indicate that the impacts of climate change are significant, however, with a wide projected range (between 5 million and 170 million additional people at risk of hunger by 2080) strongly depending on assumed socio-economic development. The likely impacts of climate change on the other important dimensions of food security are discussed qualitatively, indicating the potential for further negative impacts beyond those currently assessed with models. Finally, strengths and weaknesses of current assessment studies are discussed, suggesting improvements and proposing avenues for new analyses.


Asunto(s)
Clima , Abastecimiento de Alimentos , Efecto Invernadero , Agricultura , Predicción , Humanos
16.
Proc Natl Acad Sci U S A ; 104(50): 19686-90, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077401

RESUMEN

We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO(2) concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts.


Asunto(s)
Clima , Productos Agrícolas , Efecto Invernadero , Dióxido de Carbono/efectos adversos , Predicción , Humanos , Crecimiento Demográfico
17.
Proc Natl Acad Sci U S A ; 104(50): 19691-6, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077402

RESUMEN

The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.


Asunto(s)
Agricultura/tendencias , Clima , Efecto Invernadero , Animales , Conservación de los Recursos Naturales , Abastecimiento de Alimentos , Predicción , Humanos , Política Pública
18.
Natl Sci Rev ; 7(2): 441-452, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692059

RESUMEN

Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr-1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.

19.
Nat Food ; 1(12): 775-782, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37128059

RESUMEN

Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA