Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Chem ; 92(20): 14021-14030, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32926775

RESUMEN

Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Hipotálamo/metabolismo , Leucina/análogos & derivados , Leucina/química , Neuropéptidos/metabolismo , Proteoma/metabolismo , Aminas/química , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteómica , Espectrometría de Masas en Tándem
2.
J Proteome Res ; 17(4): 1463-1473, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518334

RESUMEN

Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.


Asunto(s)
Habénula/química , Neuropéptidos/análisis , Proteómica/métodos , Animales , Cromogranina B/metabolismo , Epitálamo/química , Procesamiento Proteico-Postraduccional , Ratas , Sulfatos/metabolismo
3.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585720

RESUMEN

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

4.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741020

RESUMEN

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Asunto(s)
Encéfalo , Órgano Subcomisural , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/embriología , Órgano Subcomisural/metabolismo , Regulación del Desarrollo de la Expresión Génica , Timosina/metabolismo , Timosina/genética , Ratones Transgénicos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Neuronas/metabolismo , Movimiento Celular/fisiología , Péptidos/metabolismo , Ratones Endogámicos C57BL
5.
J Mass Spectrom ; 56(4): e4625, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32885503

RESUMEN

Multiomic studies are increasingly performed to gain a deeper understanding of molecular processes occurring in a biological system, such as the complex microbial communities (i.e., microbiota) that reside the distal gut. While a combination of metabolomics and proteomics is more commonly used, multiomics studies including peptidomcis characterization are less frequently undertaken. Here, we investigated three different extraction methods, chosen for their previous use in extracting metabolites, peptides, and proteins, and compared their ability to perform metabolomic, peptidomic, and proteomic analysis of mouse cecum content. The methanol/chloroform/water extraction performed the best for metabolomic and peptidomic analysis as it detected the largest number of small molecules and identified the largest number of peptides, but the acidified methanol extraction performed best for proteomics analysis as it had the highest number of protein identifications. The methanol/chloroform/water extraction was further analyzed by identifying metabolites with tandem mass spectrometry (MS/MS) analysis and by gene ontology analysis for the peptide and protein results to provide a multiomics analysis of the gut microbiota.


Asunto(s)
Mezclas Complejas/análisis , Microbioma Gastrointestinal/fisiología , Metabolómica/métodos , Péptidos/análisis , Proteómica/métodos , Animales , Ciego/microbiología , Cloroformo/química , Cromatografía Líquida de Alta Presión , Masculino , Metanol/química , Ratones Endogámicos C57BL , Microbiota/fisiología , Péptidos/metabolismo , Espectrometría de Masas en Tándem , Agua
6.
Comput Struct Biotechnol J ; 18: 843-851, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322366

RESUMEN

In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.

7.
J Am Soc Mass Spectrom ; 31(9): 1854-1860, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32678615

RESUMEN

Lower urinary tract symptoms (LUTS) is common in aging males. Disease etiology is largely unknown but likely includes inflammation and age-related changes in steroid hormones. Diagnosis is currently based on subjective symptom scores, and mainstay treatments can be ineffective and bothersome. Biomarker discovery efforts could facilitate objective diagnostic criteria for personalized medicine and new potential druggable pathways. To identify urine metabolite markers specific to hormone-induced bladder outlet obstruction, we applied our custom synthesized multiplex isobaric tags to monitor the development of bladder outlet obstruction across time in an experimental mouse model of LUTS. Mouse urine samples were collected before treatment and after 2, 4, and 8 weeks of steroid hormone treatment and subsequently analyzed by nanoflow ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. Accurate and high-throughput quantification of amine-containing metabolites was achieved by 12-plex DiLeu isobaric labeling. Metandem, a novel online software tool for large-scale isobaric labeling-based metabolomics, was used for identification and relative quantification of labeled metabolites. A total of 59 amine-containing metabolites were identified and quantified, 9 of which were changed significantly by the hormone treatment. Metabolic pathway analyses showed that three metabolic pathways were potentially disrupted. Among them, the arginine and proline metabolism pathway was significantly dysregulated both in this model and in a prior analysis of LUTS patient samples. Proline and citrulline were significantly changed in both samples and serve as attractive candidate biomarkers. The 12-plex DiLeu isobaric labeling with Metandem data processing presents an accessible and efficient workflow for an amine-containing metabolome study in biological specimens.


Asunto(s)
Aminas/orina , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Marcaje Isotópico , Síntomas del Sistema Urinario Inferior/orina , Masculino , Metaboloma/fisiología , Ratones , Ratones Endogámicos C57BL
8.
Urine (Amst) ; 1: 17-23, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33870183

RESUMEN

Lower urinary tract symptoms (LUTS) are common among aging men. Since prostatic inflammation is one of its etiologies, it is plausible that urinary metabolite and protein biomarkers could be identified and used to diagnose inflammation-induced LUTS. We characterized the urine metabolome and proteome in a mouse model of bacterial-induced prostatic inflammation. Mass Spectrometry (MS)-based multi-omics analysis was employed to discover urinary protein and metabolite-based biomarkers. The investigation of isobaric dimethylated leucine (DiLeu) labeling on metabolites allowed metabolomics and proteomics analysis on the same liquid chromatography (LC)-MS platform. In total, 143 amine-containing metabolites and 1058 urinary proteins were identified and quantified (data are available via ProteomeXchange with identifier PXD018023); among them, 14 metabolites and 168 proteins were significantly changed by prostatic inflammation. Five metabolic pathways and four inflammation-related biological processes were potentially disrupted. By comparing our findings with urinary biomarkers identified in a mouse model of genetic-induced prostate inflammation and with those previously found to be associated with LUTS in older men, we identified creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig receptor as conserved biomarkers for prostatic inflammation associated with LUTS. These data suggest that these putative biomarkers could be used to identify men in which prostate inflammation is present and contributing to LUTS.

9.
Anal Chim Acta ; 1088: 99-106, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31623721

RESUMEN

Mass spectrometry-based stable isotope labeling provides the advantages of multiplexing capability and accurate quantification but requires tailored bioinformatics tools for data analysis. Despite the rapid advancements in analytical methodology, it is often challenging to analyze stable isotope labeling-based metabolomics data, particularly for isobaric labeling using MS/MS reporter ions for quantification. We report Metandem, a novel online software tool for isobaric labeling-based metabolomics, freely available at http://metandem.com/web/. Metandem provides a comprehensive data analysis pipeline integrating feature extraction, metabolite quantification, metabolite identification, batch processing of multiple data files, online parameter optimization for custom datasets, data normalization, and statistical analysis. Systematic evaluation of the Metandem tool was demonstrated on UPLC-MS/MS, nanoLC-MS/MS, CE-MS/MS and MALDI-MS platforms, via duplex, 4-plex, 10-plex, and 12-plex isobaric labeling experiments and the application to various biological samples.


Asunto(s)
Metabolómica/métodos , Programas Informáticos , Internet , Marcaje Isotópico , Espectrometría de Masas en Tándem , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA