RESUMEN
In this study, we realize functioning electrochromic devices based on colloidal niobium oxide nanocrystals, which show dual-band electrochromic behavior, with spectral selectivity between near-infrared and visible wavelengths. Minimally coloring vanadium oxide counter electrodes allow for full electrochromic devices that embody the dual-band electrochromic behavior of the niobium oxide component. The devices are fabricated using solution processing on both glass and flexible substrates, demonstrating that our platform has potential for the development of low-cost dual-band electrochromic devices for dynamic solar control in a variety of form factors and applications.
RESUMEN
A general method is developed for removal of native nonpolar oleate ligands from colloidal metal oxide nanocrystals of varying morphologies and compositions. Ligand stripping occurs by phase transfer into potassium hydroxide solution, yielding stable aqueous dispersions with little nanocrystal aggregation and without significant changes to the nanomaterials' physical or chemical properties. This method enables facile fabrication of conductive films of ligand-free nanocrystals.