Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Surf ; 9: 100095, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36691652

RESUMEN

Half a century after their discovery, polymers of N-acetylgalactosamine produced by the Aspergilli have garnered new interest as mediators of fungal virulence. Recent work has focused on the Aspergillus fumigatus secreted and cell wall-associated heteropolymer, galactosaminogalactan (GAG). This polymer, composed of galactose (Gal) and partially deacetylated N-acetylgalactosamine (GalNAc), plays a role in a variety of pathogenic processes including biofilm formation, immune modulation and evasion, and resistance to antifungals. Given its many potential contributions to fungal pathogenesis, GAG is a promising therapeutic target for novel antifungal strategies. As such, several studies have sought to elucidate the biosynthetic pathways required for GAG production and secretion. Herein we review the progress made in the understanding of the molecular mechanisms underlying GAG synthesis and identify several gaps in our understanding of this process.

2.
Regen Ther ; 22: 68-78, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36712959

RESUMEN

Heart failure is caused by various factors, making the underlying pathogenic mechanisms difficult to identify. Since cardiovascular disease tends to worsen over time, early diagnosis is key for treatment. In addition, understanding the qualitative changes in the heart associated with aging, where information on the direct influences of aging on cardiovascular disease is limited, would also be useful for treatment and diagnosis. To fill these research gaps, the focus of our study was to detect the structural and functional molecular changes associated with the heart over time, with a focus on glycans, which reflect the type and state of cells. METHODS: We investigated glycan localization in the cardiac tissue of normal mice and their alterations during aging, using evanescent-field fluorescence-assisted lectin microarray, a technique based on lectin-glycan interaction, and lectin staining. RESULTS: The glycan profiles in the left ventricle showed differences between the luminal side (medial) and wall side (lateral) regions. The medial region was characterized by the presence of sialic acid residues. Moreover, age-related changes in glycan profiles were observed at a younger age in the medial region. The difference in the age-related decrease in the level of α-galactose stained with Griffonia simplicifolia lectin-IB4 in different regions of the left ventricle suggests spatiotemporal changes in the number of microvessels. CONCLUSIONS: The glycan profile, which retains diverse glycan structures, is supported by many cell populations, and maintains cardiac function. With further research, glycan localization and changes have the potential to be developed as a marker of the signs of heart failure.

3.
Comput Struct Biotechnol J ; 20: 5790-5812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382179

RESUMEN

The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.

4.
Int J Pharm X ; 4: 100126, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36147518

RESUMEN

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

5.
Comput Struct Biotechnol J ; 19: 2486-2496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025939

RESUMEN

N-glycosylation is a physiologically vital post-translational modification of proteins in eukaryotic organisms. Initial work on Haemonchus contortus - a blood-sucking nematode of ruminants with a broad geographical distribution - has shown that this parasite harbors N-glycans with exclusive chitobiose modifications. Besides, several immunogenic proteins (e.g., amino- and metallo-peptidases) are known to be N-glycosylated in adult worms. However, an informative atlas of N-glycosylation in H. contortus is not yet available. Herein, we report 291 N-glycosylated proteins with a total of 425 modification sites in the parasite. Among them, many peptidase families (e.g., peptidase C1 and M1) including potential vaccine targets were enriched. Notably, the glycan-rich conjugates are distributed primarily in the intestine and gonads of adult worms, and consequently hidden from the host's immune system. Collectively, these data provide a comprehensive atlas of N-glycosylation in a prevalent parasitic nematode while underlining its significance for infection, immunity and prevention.

6.
Biochem Biophys Rep ; 26: 100940, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33732900

RESUMEN

BACKGROUND: Sialic acids are widely distributed in nature and have biological relevance owing to their varied structural and functional roles. Immobilized neuraminidase can selectively remove terminal N-acetyl neuraminic acid from glycoproteins without altering the protein backbone while it can be easily removed from the reaction mixture avoiding sample contamination. This enables the evaluation of changes in glycoprotein performance upon desialylation. METHODS: Neuraminidase was immobilized onto agarose activated with cyanate ester groups and further used for desialylation of model glycoproteins, a lysate from tumour cells and tumour cells. Desialylation process was analysed by lectin binding assay, determination of sialyl-Tn or flow cytometry. RESULTS: Clostridium perfringens neuraminidase was immobilized with 91 % yield and expressed activity yield was of 41%. It was effective in the desialylation of bovine fetal serum fetuin, bovine lactoferrin and ovine submaxilar mucin. A decrease in sialic-specific SNA lectin recognition of 83% and 53 % was observed for fetuin and lactoferrin with a concomitant increase in galactose specific ECA and PNA lectin recognition. Likewise, a decrease in the recognition of a specific antibody (82%) upon mucin desialylation was observed. Moreover, desialylation of a protein lysate from the sialic acid-rich cell line TA3/Ha was also possible leading to a decrease in 47 % in SNA recognition. Immobilized neuraminidase kept 100% of its initial activity upon five desialylation cycles. CONCLUSIONS: Immobilized neuraminidase is an interesting as well as a robust biotechnological tool for enzymatic desialylation purposes. GENERAL SIGNIFICANCE: Immobilized neuraminidase would contribute to understand the role of sialic acid in biological processes.

7.
Clin Mass Spectrom ; 14 Pt B: 106-114, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34917767

RESUMEN

BACKGROUND: Among Amish communities of North America, biallelic mutations of ST3GAL5 (c.694C > T) eliminate synthesis of GM3 and its derivative downstream a- and b-series gangliosides. Systemic ganglioside deficiency is associated with infantile onset psychomotor retardation, slow brain growth, intractable epilepsy, deafness, and cortical visual impairment. We developed a robust quantitative assay to simultaneously characterize glycan and ceramide moieties of plasma glycosphingolipids (GSLs) among ST3GAL5 c.694C > T homozygotes (n = 8), their heterozygous siblings (n = 24), and wild type control (n = 19) individuals. METHODS: Following extraction and saponification of total plasma lipids, GSLs were purified on a tC18 cartridge column, permethylated, and subjected to nanospray ionization mass spectrometry utilizing neutral loss scanning and data-dependent acquisition. Plasma GSLs were quantified against appropriate synthetic standards. RESULTS: Our method demonstrated linearity from 5 to 250 µl of plasma. Recovery of synthetic GSLs spiked into plasma was 99-104% with no matrix interference. Quantitative plasma GSL profiles discriminated among ST3GAL5 genotypes: GM3 and GD3 were undetectable in ST3GAL5 c.694C > T homozygotes, who had markedly elevated lactosylceramide (19.17 ±â€¯4.20 nmol/ml) relative to heterozygous siblings (9.62 ±â€¯2.46 nmol/ml) and wild type controls (6.55 ±â€¯2.16 nmol/ml). Children with systemic ganglioside deficiency had a distinctive shift in ceramide composition toward higher mass species. CONCLUSIONS: Our quantitative glycolipidomics method discriminates among ST3GAL5 c.694C > T genotypes, can reveal subtle structural heterogeneity, and represents a useful new strategy to diagnose and monitor GSL disorders in humans.

8.
Biochem Biophys Rep ; 9: 72-78, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28955991

RESUMEN

Because cartilage lacks nerves, blood vessels, and lymphatic vessels, it is thought to contain factors that inhibit the growth and development of those tissues. Chondroitin sulfate proteoglycans (CSPGs) are a major extracellular component in cartilage. CSPGs contribute to joint flexibility and regulate extracellular signaling via their attached glycosaminoglycan, chondroitin sulfate (CS). CS and CSPG inhibit axonal regeneration; however, their role in blood vessel formation is largely unknown. To clarify the function of CSPG in blood vessel formation, we tested salmon nasal cartilage proteoglycan (PG), a member of the aggrecan family of CSPG, for endothelial capillary-like tube formation. Treatment with salmon PG inhibited endothelial cell adhesion and in vitro tube formation. The anti-angiogenic activity was derived from CS in the salmon PG but not the core protein. Salmon PG also reduced matrix metalloproteinase expression and inhibited angiogenesis in the chick chorioallantoic membrane. All of these data support an anti-angiogenic role for CSPG in cartilage.

9.
MethodsX ; 3: 251-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27222820

RESUMEN

The building blocks of simple and complex oligosaccharides, termed sugar nucleotides, are often overlooked for their role in metabolic diseases and may hold the key to the underlying disease pathogenesis. Multiple reasons may account for the lack of analysis and quantitation of these sugar nucleotides, including the difficulty in isolation and purification as well as the required expensive instrumentation such as a high performance liquid chromatography (HPLC), mass spectrometer, or capillary electrophoresis. We have established a simple yet effective way to purify and quantitate sugar nucleotides using solid phase extraction (SPE) chromatography combined with fluorophore assisted carbohydrate electrophoresis (FACE). The simplicity of use, combined with the ability to run multiple samples at one time, give this technique a distinct advantage over the established methods for isolation and analysis of sugar nucleotides from cell culture models. •Sugar nucleotides can be easily purified with solid phase extraction chromatography.•FACE can be used to analyze multiple nucleotide sugar extracts with a single run.•The proposed method is simple, affordable, and uses common everyday research labware.

10.
Bone Rep ; 5: 15-21, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28326343

RESUMEN

Osteoclasts are the only cells in an organism capable of resorbing bone. These cells differentiate from monocyte/macrophage lineage cells upon stimulation by receptor activator of NF-κB ligand (RANKL). On the other hand, osteoclastogenesis is reportedly suppressed by glucose via the downregulation of NF-κB activity through suppression of reactive oxygen species generation. To examine whether other sugars might also affect osteoclast development, we compared the effects of monomeric sugars (glucose, galactose, N-acetylglucosamine (GlcNAc), and N-acetylgalactosamine (GalNAc)) on the osteoclastogenesis of murine RAW264 cells. Our results demonstrated that, in addition to glucose, both GlcNAc and GalNAc, which each have little effect on the generation of reactive oxygen species, suppress osteoclastogenesis. We hypothesized that GlcNAc might affect osteoclastogenesis through the upregulation of O-GlcNAcylation and showed that GlcNAc increases global O-GlcNAcylation, thereby suppressing the RANKL-dependent phosphorylation of NF-κB p65. Furthermore, an inhibitor of N-acetyl-ß-D-glucosaminidase, O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenylcarbamate (PUGNAc), which also increases O-GlcNAcylation, suppressed the osteoclastogenesis of RAW264 cells and that of human peripheral blood mononuclear cells. Together, these data suggest that GlcNAc suppresses osteoclast differentiation in part through the promotion of O-GlcNAcylation.

11.
Tissue Barriers ; 3(1-2): e982426, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25838985

RESUMEN

The gastrointestinal tract is coated by a thick layer of mucus that forms the front line of innate host defense. Mucus consists of high molecular weight glycoproteins called mucins that are synthesized and secreted by goblet cells and functions primarily to lubricate the epithelium and protect it from damage by noxious substances. Recent studies have also suggested the involvement of goblet cells and mucins in complex immune functions such as antigen presentation and tolerance. Under normal physiological conditions, goblet cells continually produce mucins to replenish and maintain the mucus barrier; however, goblet cell function can be disrupted by various factors that can affect the integrity of the mucus barrier. Some of these factors such as microbes, microbial toxins and cytokines can stimulate or inhibit mucin production and secretion, alter the chemical composition of mucins or degrade the mucus layer. This can lead to a compromised mucus barrier and subsequently to various pathological conditions like chronic inflammatory diseases. Insight into how these factors modulate the mucus barrier in the gut is necessary in order to develop strategies to combat these disorders.

12.
Mol Genet Metab Rep ; 2: 1-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28649518

RESUMEN

Mutations in B3GALT6, encoding the galactosyltransferase II (GalT-II) involved in the synthesis of the glycosaminoglycan (GAG) linkage region of proteoglycans (PGs), have recently been associated with a spectrum of connective tissue disorders, including spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) and Ehlers-Danlos-like syndrome. Here, we report on two sisters compound heterozygous for two novel B3GALT6 mutations that presented with severe short stature and progressive kyphoscoliosis, joint hypermobility and laxity, hyperextensible skin, platyspondyly, short ilia, and elbow malalignment. Microarray-based transcriptome analysis revealed the differential expression of several genes encoding extracellular matrix (ECM) structural components, including COMP, SPP1, COL5A1, and COL15A1, enzymes involved in GAG synthesis and in ECM remodeling, such as CSGALNACT1, CHPF, LOXL3, and STEAP4, signaling transduction molecules of the TGFß/BMP pathway, i.e., GDF6, GDF15, and BMPER, and transcription factors of the HOX and LIM families implicated in skeletal and limb development. Immunofluorescence analyses confirmed the down-regulated expression of some of these genes, in particular of the cartilage oligomeric matrix protein and osteopontin, encoded by COMP and SPP1, respectively, and showed the predominant reduction and disassembly of the heparan sulfate specific GAGs, as well as of the PG perlecan and type III and V collagens. The key role of GalT-II in GAG synthesis and the crucial biological functions of PGs are consistent with the perturbation of many physiological functions that are critical for the correct architecture and homeostasis of various connective tissues, including skin, bone, cartilage, tendons, and ligaments, and generates the wide phenotypic spectrum of GalT-II-deficient patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA