Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 829
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3171-3185, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38253325

RESUMEN

The tapered geometry of nanopipettes offers a unique perspective on protein transport through nanopores since both a gradual and fast confinement are possible depending on the translocation direction. The protein capture rate, unfolding, speed of translocation, and clogging probability are studied by toggling the LiCl concentration between 2 and 4 M. Interestingly, the proteins in this study could be transported with or against electrophoresis and offer vastly different attributes of sensing. Herein, a ruleset for studying proteins is developed that prevents irreversible pore clogging and yields upward of >100,000 events/nanopore. The extended duration of experiments further revealed that the capture rate takes ∼2 h to reach a steady state, emphasizing the importance of reaching equilibrated transport for studying the energetics and kinetics of protein transport (i.e., diffusion vs barrier-limited). Even in the equilibrated transport state, improper lowpass filtering was shown to distort the classification of diffusion-limited vs barrier-limited transport. Finally, electric-field-induced protein unfolding was found to be most prominent in electroosmotic-dominant transport, whereas electrophoretic-dominant events show no evidence of unfolding. Thus, our findings showcase the optimal conditions for protein translocations and the impact on studying protein unfolding, transporting energetics, and acquiring high bandwidth data.


Asunto(s)
Cloruro de Litio , Nanoporos , Desplegamiento Proteico , Proteínas , Electroósmosis , Cinética , Transporte de Proteínas
2.
Anal Chem ; 96(28): 11172-11180, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946102

RESUMEN

Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.


Asunto(s)
Electroósmosis , Electroforesis Capilar , Polietilenos , Electroforesis Capilar/métodos , Adsorción , Polietilenos/química , Proteínas/aislamiento & purificación , Proteínas/química , Proteínas/análisis , Compuestos de Amonio Cuaternario/química , Animales , Propiedades de Superficie
3.
Electrophoresis ; 45(13-14): 1265-1266, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376122

RESUMEN

A serious error exists in the paper: Alharbi KAM, Riaz A, Sikandar S. An entropy model for Carreau nanofluid ciliary flow with electroosmosis and thermal radiations: a numerical study. Electrophoresis. 2024;45:1112-1129.


Asunto(s)
Electroósmosis , Entropía , Electroósmosis/métodos , Modelos Teóricos , Electroforesis/métodos
4.
Electrophoresis ; 45(5-6): 433-441, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38161243

RESUMEN

Herein, we report an electroosmotic pump (EOP) based on a multilayer track-etched polycarbonate (PC) membrane. A remarkable increase of maximum backpressure (198.2-2400 mmH2 O) of a fundamental pump unit was obtained at 0.8 mA, when the number of PC membranes was increased from 1 to 10. Meanwhile, the corresponding flow rate was increased from 80.3 to 111.7 µL/min. Furthermore, multiple pump units were assembled in series to obtain a multistage EOP. For a three-stage EOP (EOP-3), the operating voltage and power can be decreased significantly by 52%-72% under different driving currents, with a minimum power of 26.7 µW. Thus, EOP-3 can run stably over 35 h at a pulse current of 0.1 mA without the generation of gas bubbles. The pump was further integrated into a miniature device, which was successfully used to decrease the blood glucose level of diabetic rats by subcutaneous delivery of fast-acting insulin. This work brings a facile and efficient strategy to enhance the backpressure and lower the operating voltage and power of EOPs, which may find promising applications in drug delivery.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ratas , Electroósmosis
5.
Electrophoresis ; 45(7-8): 676-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350722

RESUMEN

Understanding electrokinetic transport in nanochannels and nanopores is essential for emerging biological and electrochemical applications. The viscoelectric effect is an important mechanism implicated in the increase of local viscosity due to the polarization of a solvent under a strong electric field. However, most analyses of the viscoelectric effect have been limited to numerical analyses. In this work, we present a set of analytical solutions applicable to the physical description of viscoelectric effects in nanochannel electrokinetic systems. To achieve such closed-form solutions, we employ the Debye-Hückel approximation of small diffuse charge layer potentials compared to the thermal potential. We analyze critical parameters, including electroosmotic flow profiles, electroosmotic mobility, flow rate, and channel conductance. We compare and benchmark our analytical solutions with published predictions from numerical models. Importantly, we leverage these analytical solutions to identify essential thermophysical and nondimensional parameters that govern the behavior of these systems. We identify scaling parameters and relations among surface charge density, ionic strength, and nanochannel height.


Asunto(s)
Electroósmosis , Electroósmosis/métodos , Viscosidad , Nanotecnología/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Nanoporos , Concentración Osmolar , Nanoestructuras/química
6.
Electrophoresis ; 45(13-14): 1155-1170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38115169

RESUMEN

Drug delivery systems, where the nanofluid flow with electroosmosis and mixed convection can help in efficient and targeted drug delivery to specific cells or organs, could benefit from understanding the behavior of nanofluids in biological systems. In current work, authors have studied the theoretical model of two-dimensional ciliary flow of blood-based (Eyring-Powell) nanofluid model with the insertion of ternary hybrid nanoparticles along with the effects of electroosmosis, magnetohydrodynamics, thermal radiations, and mixed convection. Moreover, the features of entropy generation are also taken into consideration. The system is modeled in a wave frame with the approximations of large wave number and neglecting turbulence effects. The problem is solved numerically by using the shooting method with the assistance of computational software "Mathematica" for solving the governing equation. According to the temperature curves, the temperature will increase as the Hartman number, fluid factor, ohmic heating, and cilia length increase. It is also disclosed that ternary hybrid nanoparticles result in a change in flow rate when other problem parameters are varied, and the same is true for temperature graphs. Engineers and scientists can make better use of nanofluid-based cooling systems in electronics, automobiles, and industrial processes with the aid of the study's findings.


Asunto(s)
Convección , Electroósmosis , Entropía , Electroósmosis/métodos , Nanopartículas/química , Modelos Teóricos , Nanotecnología/instrumentación , Nanotecnología/métodos , Hidrodinámica , Sistemas de Liberación de Medicamentos/instrumentación
7.
Electrophoresis ; 45(11-12): 1054-1064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506142

RESUMEN

Numerical modeling of Taylor dispersion analysis (TDA) was performed using COMSOL Multiphysics to facilitate better and faster optimization of the experimental conditions. Parameters, such as pressure, electric field, diameter, and length of capillary on the TDA conditions, were examined for particles with hydrodynamic radius (Rh) of 2.5-250 Å. The simulations were conducted using 25, 50, and 100 cm length tubes with diameters of 25, 50, and 100 µm. It was shown that particles with larger diffusion coefficients gave more accurate results at higher velocities, and in longer and wider columns; particles with smaller diffusion coefficients gave more accurate results at smaller velocities, and in shorter and thinner columns. Moreover, the effect of electric field on the validity and the applicability of TDA was studied using TDA in conjunction with capillary electrophoresis. Diffusion coefficients were obtained using a pressure and the TDA equation and compared with those obtained with a pressure in combination of an electric field for fluorescein, FD4, FD20, FD70, and FD500. We found that TDA can be used with the presence of moderate electrophoretic migration and electroosmotic flow, when appropriate conditions were met.


Asunto(s)
Electroforesis Capilar , Electroforesis Capilar/métodos , Simulación por Computador , Difusión , Modelos Teóricos , Electroósmosis/métodos , Electricidad , Hidrodinámica , Tamaño de la Partícula , Presión
8.
Electrophoresis ; 45(5-6): 557-572, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38161236

RESUMEN

We explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well-known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino-amide mimic hybrid precursors synthesized by silylation of amino-amides (Si-AA) derivatives with 3-isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein-protein interactions (π-π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si-AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein-surface interactions. The analytical performances of amino-amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si-AA in the functionalization mixture.


Asunto(s)
Amidas , Electroósmosis , Electroforesis Capilar/métodos , Polietilenglicoles/química , Proteínas , Dióxido de Silicio/química
9.
Electrophoresis ; 45(11-12): 1065-1079, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195843

RESUMEN

Polymer beads, especially polystyrene particles, have been extensively used as model species in insulator-based dielectrophoresis (iDEP) studies. Their use in alternating current iDEP (AC-iDEP) is less explored; however, an assessment in the low-frequency regime (≤10 kHz) allows to link surface conduction effects with the surface properties of polymer particles. Here, we provide a case study for various experimental conditions assessing sub-micrometer polystyrene particles with AC-iDEP and link to accepted surface conduction theory to predict and experimentally verify the observed AC-iDEP trapping behavior based on apparent zeta potential and solution conductivity. We find excellent agreement with the theoretical predictions, but also the occurrence of concentration polarization electroosmotic flow under the studied conditions, which have the potential to confound acting dielectrophoresis conditions. Furthermore, we study a case relevant to the assessment of microplastics in human and animal body fluids by mimicking the protein adsorption of high abundant proteins in blood by coating polystyrene beads with bovine serum albumin, a highly abundant protein in blood. Theoretical predictions and experimental observations confirm a difference in observed AC-iDEP behavior between coated and non-coated particles, which might be exploited for future studies of microplastics in blood to assess their exposure to humans and animals.


Asunto(s)
Electroforesis , Tamaño de la Partícula , Poliestirenos , Albúmina Sérica Bovina , Poliestirenos/química , Electroforesis/métodos , Albúmina Sérica Bovina/química , Humanos , Conductividad Eléctrica , Animales , Electroósmosis , Microplásticos/química , Adsorción , Propiedades de Superficie , Bovinos
10.
Chemphyschem ; 25(15): e202400281, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38686913

RESUMEN

The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.


Asunto(s)
Simulación de Dinámica Molecular , Nanoporos , Péptidos , Fosforilación , Péptidos/química , Electroósmosis , Grafito/química
11.
Langmuir ; 40(18): 9622-9629, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652583

RESUMEN

The detection and identification of nanoscale molecules are crucial, but traditional technology comes with a high cost and requires skilled operators. Solid-state nanopores are new powerful tools for discerning the three-dimensional shape and size of molecules, enabling the translation of molecular structural information into electric signals. Here, DNA molecules with different shapes were designed to explore the effects of electroosmotic forces (EOF), electrophoretic forces (EPF), and volume exclusion on electric signals within solid-state nanopores. Our results revealed that the electroosmotic force was the main driving force for single-stranded DNA (ssDNA), whereas double-stranded DNA (dsDNA) was primarily dominated by electrophoretic forces in nanopores. Moreover, dsDNA caused greater amplitude signals and moved faster through the nanopore due to its larger diameter and carrying more charges. Furthermore, at the same charge level and amount of bases, circular dsDNA exhibited a tighter structure compared to brush DNA, resulting in a shorter length. Consequently, circular dsDNA caused higher current-blocking amplitudes and faster passage speeds. The characterization approach based on nanopores allows researchers to get molecular information about size and shape in real time. These findings suggest that nanopore detection has the potential to streamline nanoscale characterization and analysis, potentially reducing both the cost and complexity.


Asunto(s)
ADN , Nanoporos , ADN/química , Conformación de Ácido Nucleico , ADN de Cadena Simple/química , Electroósmosis/métodos
12.
J Biomech Eng ; 146(9)2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511298

RESUMEN

Immunoassays based on reactions between target pathogen (antigen; Ag) and antibody (Ab) are frequently used for Ag detection. An external magnetic field was used to immobilize magnetic microbeads-tagged-antibodies (mMB-Ab) on the surface of a microchannel in the capture zone. The mMB-Ab was subsequently used for Ag detection. The objective of this numerical study, with experimental validation, is to assess the surface reaction between mMB-Ab and Ag in the presence of electro-osmotic flow (EOF). First, immobilization of mMB-Ab complex in the wall of the capture zone was achieved. Subsequently, the Ag was transported by EOF toward the capture zone to bind with the immobilized mMB-Ab. Lastly, mMB-Ab:Ag complex was formed and immobilized in the capture zone. A finite volume solver was used to implement the above steps. The surface reaction between the mMB-Ab and Ag was investigated in the presence of electric fields (E): 150 V/cm-450 V/cm and Ag concentrations: 0.001 M-1000 M. The depletion of mMB-Ab increases with time as the E decreases. Furthermore, as the concentration of Ag decreases, the depletion of mMB-Ab increases with time. These results quantify the detection of Ag using the EOF device; thus, signifying its potential for rapid throughput screening of Ag. This platform technology can lead to the development of portable devices for the detection of target cells, pathogens, and biomolecules for testing water systems, biological fluids, and biochemicals.


Asunto(s)
Anticuerpos Inmovilizados , Electroósmosis , Microesferas , Anticuerpos , Fenómenos Magnéticos
13.
Anal Chem ; 95(45): 16710-16716, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916500

RESUMEN

Extracellular vesicles (EVs) are cell-derived, naturally produced, membrane-bound nanoscale particles that are linked to cell-cell communication and the propagation of diseases. Here, we report the design and testing of in-plane nanofluidic devices for resistive-pulse measurements of EVs derived from bovine milk and human breast cancer cells. The devices were fabricated in plane with three nanopores in series to determine the particle volume and diameter, two pore-to-pore regions to measure the electrophoretic mobility and zeta potential, and an in-line filter to prevent cellular debris and aggregates from entering the nanopore region. Devices were tested with and without the channels coated with a short-chain PEG silane to minimize electroosmotic flow and permit an accurate measurement of the electrophoretic mobility and zeta potential of the EVs. To enhance throughput of EVs, vacuum was applied to the waste reservoir to increase particle frequencies up to 1000 min-1. The nanopores had cross-sections 200 nm wide and 200 nm deep and easily resolved EV diameters from 60 to 160 nm. EVs from bovine milk and human breast cancer cells had similar particle size distributions, but their zeta potentials differed by 2-fold, -8 ± 1 and -4 ± 1 mV, respectively.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Nanoporos , Humanos , Femenino , Electroforesis , Electroósmosis
14.
Electrophoresis ; 44(1-2): 44-52, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775948

RESUMEN

We have investigated the role of viscoelectric effect on diffusioosmotic flow (DOF) through a nanochannel connected with two reservoirs. The transport equations governing the flow dynamics are solved numerically using the finite element technique. We have extensively analyzed the variation of induced field due to electric double layer (EDL) phenomenon, relative viscosity as modulated by the viscoelectric effect as well as reservoir's concentration difference, and their eventual impact on the underlying flow characteristics. It is revealed that the induced electric field in the EDL enhances fluid viscosity substantially near the charged wall at a higher concentration. We have shown that neglecting viscoelectric effect in the paradigm of diffusioosmotic transport overestimates the net throughput, particularly at a higher concentration difference. Furthermore, we show that pertaining to chemiosmosis dominated regime, the average flow velocity modifies with the increase in concentration difference up to a critical value. In comparison, the rise in the strength of resistive electroosmotic actuation by the accumulation of anions in the upstream reservoir reduces the average flow velocity at a higher concentration difference. We have reported a reduction in critical concentration with the increase in viscoelectric effect. The inferences of this analysis are deemed pertinent to reveal the bearing of viscoelectric effect as a flow control mechanism pertaining to DOF at nanoscale.


Asunto(s)
Electricidad , Electroósmosis , Electroósmosis/métodos
15.
Electrophoresis ; 44(7-8): 733-743, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808619

RESUMEN

Developing and assessing nanofluidic systems is time-consuming and costly owing to the method's novelty; hence, modeling is essential to determine the optimal areas for implementation and to grasp its workings. In this work, we examined the influence of dual-pole surface and nanopore configuration on ion transfer simultaneously. To achieve this, the two trumpet and cigarette configuration were coated with a dual-pole soft surface so that the negative charge could be positioned in the nanopore's small aperture. Subsequently, the Poisson-Nernst-Planck and Navier-Stokes equations were simultaneously solved under steady-state circumstances using varied values physicochemical properties for the soft surface and electrolyte. The pore's selectivity was S Trumpet > S Cigarette ${S}_{{\rm{Trumpet}}} > {S}_{{\rm{Cigarette}}}$ , and the rectification factor, on the other hand, was R f Cigarette < R f Trumpet ${R}_{{f}_{{\rm{Cigarette}}}} < {R}_{{f}_{{\rm{Trumpet}}}}$ , when the overall concentration was very low. When the ion partitioning effect is taken into account, we clearly show that the rectifying variables for the cigarette configuration and the trumpet configuration can reach values of 45 and 49.2, when the charge density and mass concentration were 100 mol/m3 and 1 mM, respectively. By using dual-pole surfaces, the controllability of nanopores' rectifying behavior may be modified to produce superior separation performance.


Asunto(s)
Electroósmosis , Nanoporos , Electrólitos
16.
Electrophoresis ; 44(23): 1756-1773, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37438973

RESUMEN

Much progress has been made in the electrokinetic phenomena inside nanochannels in the last decades. As the dimensions of the nanochannels are compatible to that of the electric double layer (EDL), the electrokinetics inside nanochannels indicate many unexpected behaviors, which show great potential in the fields of material science, biology, and chemistry. This review summarizes the recent development of nanofluidic electrokinetics in both fundamental and applied research. First, the techniques for constructing nanochannels are introduced to give a guideline for choosing the optimal fabrication technique based on the specific feature of the nanochannel. Then, the theories and experimental investigations of the EDL, electroosmotic flow, and electrophoresis of nanoparticles inside the nanochannels are discussed. Furthermore, the applications of nanofluidic electrokinetics in iontronics, sensing, and biomolecule separation fields are summarized. In Section 5, some critical challenges and the perspective on the future development of nanofluidic electrokinetics are briefly proposed.


Asunto(s)
Electroósmosis , Electroforesis/métodos
17.
Electrophoresis ; 44(7-8): 646-655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36502493

RESUMEN

Free-flow electrophoresis (FFE) has the ability to continuously separate charged solutes from complex biological mixtures. Recently, a free-flow counterflow gradient focusing mechanism has been introduced to FFE, and it offers the potential for improved resolution and versatility. However, further investigation is needed to understand the solute dispersion at the focal position. Therefore, the goal of this work is to model the impact of electroosmotic flow, which is found to produce a pressure-driven backflow to maintain the fixed counterflow inputs. Like the counterflow, this backflow has a parabolic velocity profile that must be considered when predicting the concentration distribution of a given solute. After the model is established, preliminary experimental results are presented for a qualitative comparison. Results demonstrate a reasonable agreement at low applied voltages and provide a strong framework for future experimental validation.


Asunto(s)
Electroósmosis , Electroforesis/métodos , Soluciones
18.
Electrophoresis ; 44(7-8): 711-724, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720044

RESUMEN

A number of microfluidic systems of interest essentially consist of micro-scaled channels/tubes, whose walls are inherently rough. The novelty of the current study lies in exploring the impact of the wall roughness on mass transfer in the case of flow through a microtube with porous wall. The current investigation is possibly the first attempt at exploring the effect of mass transfer for a porous-walled, rough microtube, as earlier studies were limited to the analysis of hydrodynamic and thermal effects only in an impervious microtube. In particular, the effects of the corrugation amplitude and the wavenumber on the mass transport have been assessed in detail in this work, via a combination of perturbation approximations and numerical analysis. Several interesting revelations are elicited regarding the effects of these pertinent parameters on the mass transfer coefficient, permeation flux, wall surface concentration, and delivery flux of the neutral solute. It has been unveiled that it is possible to enhance the solute mass flux by 10% via appropriate tuning of corrugation amplitude. The findings of the study can help in better understanding of mass transport for a porous-walled, rough microtube, which has critical relevance in several important applications such as micromixers, targeted drug delivery, and so on.


Asunto(s)
Electroósmosis , Modelos Teóricos , Porosidad , Microfluídica , Soluciones
19.
Electrophoresis ; 44(5-6): 558-562, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495094

RESUMEN

Electroosmotic flow (EOF) was determined in tridimensional (3D)-printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3-10) were used for the EOF mobility (µEOF ) measurements, which ranged from 2.00 × 10-4 to 12.52 × 10-4  cm2  V-1  s-1 . The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D-printed microfluidic devices, in which EOF is relevant.


Asunto(s)
Electroósmosis , Fosfatos , Electroósmosis/métodos , Impresión Tridimensional
20.
Electrophoresis ; 44(3-4): 450-461, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36448415

RESUMEN

To date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.g., frequency and voltage). The governing equations comprising of electric domain and fluid domain have been coupled using finite element method. The developed model was employed to investigate the effect of electrode geometric parameters on electroosmotic slip velocity and its subsequent effect on pressure and flow rate. Numerical simulation indicates that the optimal performance can be achieved using a design with varying step height and displacement, at a given voltage (2.5 V) and frequency (1 kHz). Finally, in order to validate the numerical simulation, the optimal microchip was fabricated using a combination of photolithography, electroplating, and a polydimethylsiloxane microchannel. Our results indicate that our micropump is capable of generating a pressure, velocity, and flow rate of 74.2 Pa, 1.76 mm/s, and 14.8 µl/min, respectively. This result reveals that our proposed geometry outperforms the state-of-the-art micropumps previously reported in the literature by improving the fluid velocity by 32%, with 80% less electrodes per unit length, and whereas the channel length is ∼80% shorter.


Asunto(s)
Electricidad , Electroósmosis , Electrodos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA