Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(8): 1570-1590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499787

RESUMEN

Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.


Asunto(s)
Dioxigenasas , Proteínas de Drosophila , Drosophila melanogaster , Animales , Femenino , Humanos , Diferenciación Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Dioxigenasas/metabolismo
2.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832825

RESUMEN

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Asunto(s)
Células Germinativas , Animales , Historia del Siglo XXI , Células Germinativas/citología , Historia del Siglo XX , Nicho de Células Madre/fisiología , Drosophila , Humanos , Biología Evolutiva/historia , Células Madre/citología
3.
Blood ; 144(1): 21-34, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579285

RESUMEN

ABSTRACT: Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.


Asunto(s)
Células Madre Hematopoyéticas , Nicho de Células Madre , Estrés Fisiológico , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Animales , Humanos , Nicho de Células Madre/fisiología , Adaptación Fisiológica , Médula Ósea/patología , Médula Ósea/metabolismo , Médula Ósea/fisiología , Envejecimiento/fisiología , Hematopoyesis/fisiología
4.
Glia ; 72(7): 1273-1289, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38515286

RESUMEN

Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.


Asunto(s)
Hipocampo , Microglía , Neurogénesis , Tamoxifeno , Animales , Tamoxifeno/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Masculino , Ratones Transgénicos , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología
5.
Curr Osteoporos Rep ; 22(4): 416-432, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782850

RESUMEN

PURPOSE OF THE REVIEW: In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS: Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.


Asunto(s)
Envejecimiento , Médula Ósea , Células Madre Hematopoyéticas , Homeostasis , Nicho de Células Madre , Humanos , Envejecimiento/fisiología , Envejecimiento/inmunología , Médula Ósea/inmunología , Nicho de Células Madre/fisiología , Huesos/metabolismo , Huesos/inmunología , Mitocondrias , Microambiente Celular/fisiología , Células de la Médula Ósea/inmunología , Animales , Inmunomodulación
6.
J Integr Neurosci ; 23(7): 131, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39082287

RESUMEN

Stroke is a prominent contributor to mortality and impairment on a global scale. Ischemic stroke accounts for approximately 80% of stroke cases and is caused by occlusion of cerebral blood vessels. Enhancing neurogenesis through the modulation of the neural stem cell niche in the adult brain is a promising therapeutic strategy for individuals afflicted with ischemic stroke. Neurogenesis results in the generation of newborn neurons that serve as replacements for deceased neural cells within the ischemic core, thereby playing a significant role in the process of neural restoration subsequent to cerebral ischemia. Research has shown that activation of the Wnt/ß-catenin pathway can augment neurogenesis following cerebral ischemia, suggesting that this pathway is a potentially beneficial therapeutic target for managing ischemic stroke. This review provides an extensive analysis of the current knowledge regarding the involvement of the Wnt/ß-catenin pathway in promoting neurogenesis, thereby offering a promising avenue for therapeutic intervention in the context of ischemic stroke or other neurological impairments.


Asunto(s)
Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Neurogénesis , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/fisiología , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Células Madre Adultas/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia
7.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999948

RESUMEN

Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Nicho de Células Madre , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Nicho de Células Madre/fisiología , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
8.
Bull Exp Biol Med ; 177(1): 115-123, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38963596

RESUMEN

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFß1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFß1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFß1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Diferenciación Celular/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Animales , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Cadherinas/metabolismo , Laminina/metabolismo , Laminina/farmacología , Proteínas Musculares/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/citología , Fibronectinas/metabolismo , Fibronectinas/farmacología , Antígenos CD/metabolismo , Miocardio/metabolismo , Miocardio/citología , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología , Colágeno Tipo I/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Técnicas de Cultivo Tridimensional de Células/métodos
9.
Adv Exp Med Biol ; 1442: 17-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38228956

RESUMEN

Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.


Asunto(s)
Médula Ósea , Nicho de Células Madre , Nicho de Células Madre/fisiología , Células Madre Hematopoyéticas , Diferenciación Celular/fisiología , Células de la Médula Ósea
11.
Cytokine Growth Factor Rev ; 76: 22-29, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38472041

RESUMEN

The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.


Asunto(s)
Médula Ósea , Semaforinas , Humanos , Diferenciación Celular/fisiología , Semaforinas/metabolismo , Nicho de Células Madre/fisiología , Células Madre Hematopoyéticas , Hematopoyesis/fisiología , Células de la Médula Ósea
12.
Curr Top Dev Biol ; 158: 203-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670706

RESUMEN

Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.


Asunto(s)
Comunicación Celular , Músculo Esquelético , Nicho de Células Madre , Animales , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Humanos , Nicho de Células Madre/fisiología , Regeneración/fisiología , Desarrollo de Músculos , Diferenciación Celular
13.
Biomaterials ; 311: 122684, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38971120

RESUMEN

Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCµN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology. Mouse embryonic stem cell (mESC) is used as the model cell to study how local niche signals affect stem cell behavior and fate. By precisely engineering the internal microstructures of the 3D SCµNs, we demonstrate that the cell division direction can be controlled by the biophysical niche signals, in a cell shape-independent manner. After confining the cell division direction to a dominating axis, single mESCs are exposed to asymmetric biochemical niche signals, specifically, cell-cell adhesion molecule on one side and extracellular matrix on the other side. We demonstrate that, symmetry-breaking (asymmetric) niche signals successfully trigger cell polarity formation and bias the orientation of asymmetric cell division, the mitosis process resulting in two daughter cells with differential fates, in mESCs.


Asunto(s)
Impresión Tridimensional , Nicho de Células Madre , Animales , Ratones , Nicho de Células Madre/fisiología , División Celular Asimétrica , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Matriz Extracelular/metabolismo
14.
Gastroenterol Clin North Am ; 53(3): 473-480, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068008

RESUMEN

In intestinal resection animal models of short bowel syndrome (SBS), the remaining epithelium mounts a robust adaptive response characterized by early stem cell expansion and increased crypt depth, villus height and nutrient absorption. In humans the adaptive response is critical for resumption of oral nutrition, yet it may be variable, and underlying mechanisms are much less well understood. Current knowledge relating to the role of stem and mesenchymal niche cells in the adaptive response in animal models and in human SBS are addressed in this review.


Asunto(s)
Mucosa Intestinal , Síndrome del Intestino Corto , Nicho de Células Madre , Síndrome del Intestino Corto/fisiopatología , Síndrome del Intestino Corto/patología , Humanos , Nicho de Células Madre/fisiología , Animales , Mucosa Intestinal/patología , Modelos Animales de Enfermedad , Células Madre/patología
15.
Stem Cell Reports ; 19(4): 486-500, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38458190

RESUMEN

Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis. Here, we further characterize OM and identify megakaryocyte-induced mediators that augment the role of OM in the niche. Single-cell mRNA-seq, mass spectrometry, and CyTOF examination of megakaryocyte-stimulated OM suggested that upregulation of CD166 and Embigin on OM augment their hematopoiesis maintenance function. CD166 knockout OM or shRNA-Embigin knockdown OM confirmed that the loss of these molecules significantly reduced the ability of OM to augment the osteoblast-mediated hematopoietic-enhancing activity. Recombinant CD166 and Embigin partially substituted for OM function, characterizing both proteins as critical mediators of OM hematopoietic function. Our data identify Embigin and CD166 as OM-regulated critical components of HSC function in the niche and potential participants in various in vitro manipulations of stem cells.


Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Animales , Ratones , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Osteoblastos/metabolismo , Nicho de Células Madre/fisiología , Regulación hacia Arriba , Molécula de Adhesión Celular del Leucocito Activado/metabolismo
16.
Curr Top Dev Biol ; 158: 151-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670704

RESUMEN

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Asunto(s)
Homeostasis , Músculo Esquelético , Regeneración , Nicho de Células Madre , Regeneración/fisiología , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Animales , Nicho de Células Madre/fisiología , Células Madre/citología , Células Madre/fisiología , Células Madre/metabolismo
17.
Nat Commun ; 15(1): 1166, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326318

RESUMEN

Drosophila male germline stem cells (GSCs) reside at the tip of the testis and surround a cluster of niche cells. Decapentaplegic (Dpp) is one of the well-established ligands and has a major role in maintaining stem cells located in close proximity. However, the existence and the role of the diffusible fraction of Dpp outside of the niche have been unclear. Here, using genetically-encoded nanobodies called Morphotraps, we physically block Dpp diffusion without interfering with niche-stem cell signaling and find that a diffusible fraction of Dpp is required to ensure differentiation of GSC daughter cells, opposite of its role in maintenance of GSC in the niche. Our work provides an example in which a soluble niche ligand induces opposed cellular responses in stem cells versus in differentiating descendants to ensure spatial control of the niche. This may be a common mechanism to regulate tissue homeostasis.


Asunto(s)
Proteínas de Drosophila , Animales , Masculino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ligandos , Diferenciación Celular/fisiología , Drosophila/metabolismo , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo
18.
Curr Top Dev Biol ; 158: 179-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670705

RESUMEN

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Asunto(s)
Microambiente Celular , Matriz Extracelular , Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Animales , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Adaptación Fisiológica , Nicho de Células Madre/fisiología , Regeneración/fisiología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Células Madre/citología , Células Madre/fisiología
19.
Adv Sci (Weinh) ; 11(26): e2307452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708713

RESUMEN

Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.


Asunto(s)
Neoplasias de la Mama , Nicho de Células Madre , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Animales , Femenino , Nicho de Células Madre/fisiología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Ratones , Células Epiteliales/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/genética , Microambiente Tumoral
20.
Arq. bras. oftalmol ; 80(4): 268-272, July-Aug. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-888124

RESUMEN

ABSTRACT Various approaches have been taken to improve our knowledge of the microenvironmental regulation of limbal epithelial stem cells. Researchers have extensively investigated the roles of growth factors, survival factors, cytokines, enzymes, and permeable molecules secreted by the limbal cells. However, recent evidence suggests that stem cell fate (i.e., self-renewal or differentiation) can also be influenced by biophysical and mechanical cues related to the supramolecular organization and the liquid crystalline (mesophase) nature of the stromal extracellular matrix. These cues can be sensed by stem cells and transduced into intracellular biochemical and functional responses, a process known as mechanotransduction. The objective of this review is to offer perspectives on the supramolecular microenvironmental regulation of limbal epithelial stem cells and the differentiation of their progeny.


RESUMO Muitas abordagens têm sido utilizadas para ampliar entendimentos sobre a regulação microambiental das células tronco epiteliais limbais. Neste contexto, pesquisadores têm exaustivamente investigado a participação de fatores de crescimento, fatores de sobrevida, citocinas, enzimas e moléculas permeáveis secretadas pelas células limbais. Entretanto, evidências recentes sugerem que o destino (ie. autorrenovação ou recrutamento para a via de diferenciação) das células tronco também sofre influência de estímulos biofísicos ou mecânicos relacionados à organização supramolecular e à natureza liquido-cristalina (mesofases) da matriz extracelular estromal. Esses estímulos podem ser percebidos e traduzidos pelas células tronco em sinais bioquímicos que geram respostas funcionais, através de um processo designado de mecanotransdução. Objetiva-se, com a presente revisão, oferecer ao leitor perspectivas supramoleculares sobre a regulação microambiental das células tronco epiteliais limbais e a diferenciação de sua progênie.


Asunto(s)
Humanos , Células Madre/fisiología , Diferenciación Celular/fisiología , Limbo de la Córnea/citología , Epitelio Corneal/citología , Mecanotransducción Celular/fisiología , Matriz Extracelular/fisiología , Epitelio Corneal/fisiología , Nicho de Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA