Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666119

RESUMEN

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromosomas Humanos Par 17/metabolismo , Técnicas de Silenciamiento del Gen , Haplotipos , Hepatocitos/metabolismo , Heterocigoto , Código de Histonas , Humanos , Hígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
2.
N Engl J Med ; 388(11): 969-979, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36920755

RESUMEN

BACKGROUND: Persons with toxic gain-of-function variants in the gene encoding apolipoprotein L1 (APOL1) are at greater risk for the development of rapidly progressive, proteinuric nephropathy. Despite the known genetic cause, therapies targeting proteinuric kidney disease in persons with two APOL1 variants (G1 or G2) are lacking. METHODS: We used tetracycline-inducible APOL1 human embryonic kidney (HEK293) cells to assess the ability of a small-molecule compound, inaxaplin, to inhibit APOL1 channel function. An APOL1 G2-homologous transgenic mouse model of proteinuric kidney disease was used to assess inaxaplin treatment for proteinuria. We then conducted a single-group, open-label, phase 2a clinical study in which inaxaplin was administered to participants who had two APOL1 variants, biopsy-proven focal segmental glomerulosclerosis, and proteinuria (urinary protein-to-creatinine ratio of ≥0.7 to <10 [with protein and creatinine both measured in grams] and an estimated glomerular filtration rate of ≥27 ml per minute per 1.73 m2 of body-surface area). Participants received inaxaplin daily for 13 weeks (15 mg for 2 weeks and 45 mg for 11 weeks) along with standard care. The primary outcome was the percent change from the baseline urinary protein-to-creatinine ratio at week 13 in participants who had at least 80% adherence to inaxaplin therapy. Safety was also assessed. RESULTS: In preclinical studies, inaxaplin selectively inhibited APOL1 channel function in vitro and reduced proteinuria in the mouse model. Sixteen participants were enrolled in the phase 2a study. Among the 13 participants who were treated with inaxaplin and met the adherence threshold, the mean change from the baseline urinary protein-to-creatinine ratio at week 13 was -47.6% (95% confidence interval, -60.0 to -31.3). In an analysis that included all the participants regardless of adherence to inaxaplin therapy, reductions similar to those in the primary analysis were observed in all but 1 participant. Adverse events were mild or moderate in severity; none led to study discontinuation. CONCLUSIONS: Targeted inhibition of APOL1 channel function with inaxaplin reduced proteinuria in participants with two APOL1 variants and focal segmental glomerulosclerosis. (Funded by Vertex Pharmaceuticals; VX19-147-101 ClinicalTrials.gov number, NCT04340362.).


Asunto(s)
Apolipoproteína L1 , Glomeruloesclerosis Focal y Segmentaria , Proteinuria , Animales , Humanos , Ratones , Apolipoproteína L1/antagonistas & inhibidores , Apolipoproteína L1/genética , Apolipoproteínas/genética , Negro o Afroamericano , Creatinina/orina , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Células HEK293 , Proteinuria/tratamiento farmacológico , Proteinuria/genética
3.
Cell ; 147(1): 81-94, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962509

RESUMEN

The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.


Asunto(s)
Glucosa/metabolismo , MicroARNs/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Resistencia a la Insulina , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , Obesidad/genética , Obesidad/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
N Engl J Med ; 384(3): 252-260, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283989

RESUMEN

Transfusion-dependent ß-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.).


Asunto(s)
Anemia de Células Falciformes/terapia , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Edición Génica/métodos , Terapia Genética , Proteínas Represoras/genética , Talasemia beta/terapia , Adulto , Anemia de Células Falciformes/genética , Femenino , Hemoglobina Fetal/genética , Humanos , Proteínas Represoras/metabolismo , Adulto Joven , Talasemia beta/genética
5.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657463

RESUMEN

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Asunto(s)
Antineoplásicos , Glioblastoma , Glioma , Adulto , Femenino , Humanos , Masculino , Quimioradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Persona de Mediana Edad , Anciano
7.
Nature ; 536(7616): 285-91, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535533

RESUMEN

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.


Asunto(s)
Exoma/genética , Variación Genética/genética , Análisis Mutacional de ADN , Conjuntos de Datos como Asunto , Humanos , Fenotipo , Proteoma/genética , Enfermedades Raras/genética , Tamaño de la Muestra
8.
Support Care Cancer ; 30(2): 1493-1500, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34532753

RESUMEN

PURPOSE: The impact of exercise on health-related quality of life (HRQOL) in patients with glioma remains unknown. We hypothesized that glioma patients with low exercise tolerance experience more distress in HRQOL sleep and fatigue domains than patients with high tolerance to exercise. METHODS: Thirty-eight male and female patients with low- or high-grade glioma treated at a single tertiary care institution participated. Patients completed a validated telephone survey to determine their exercise habits before and following diagnosis. An unpaired t-test was run to measure the interaction between exercise tolerances on HRQOL functional and impairment domains. RESULTS: Those with low pre-morbid physical activity levels had more distress in HRQOL sleep and fatigue domains. The effects were independent of plasma brain-derived neurotrophic factor (BDNF) levels and the degree of exercise did not appear to impact plasma BDNF in adult glioma patients. CONCLUSIONS: The aim of this study was to examine the significance of exercise habits on perioperative functional outcomes in patients with low-grade or high-grade glioma. We found that glioma patients with low tolerance to exercise had more sleep disturbances and greater fatigue than glioma patients with high tolerance to exercise. Furthermore, exercise tolerance in the adult glioma population does not appear to impact plasma BDNF secretion.


Asunto(s)
Glioma , Calidad de Vida , Adulto , Ejercicio Físico , Fatiga/epidemiología , Femenino , Humanos , Masculino , Sueño
9.
J Neuroophthalmol ; 41(4): 512-518, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33630780

RESUMEN

BACKGROUND: Pituitary adenomas and nonadenomatous lesions in the sellar region may be difficult to distinguish by imaging yet that distinction is critical in guiding management. The nature of the diagnostic errors in this setting has not been well documented. METHODS: Two neurosurgeons and 2 neuroradiologists of differing experience levels viewed deidentified MRIs of 18 nonadenomatous sellar lesions and 21 adenomas. They recorded their diagnoses, the imaging features they used to make those diagnoses, and their confidence in making those diagnoses. RESULTS: Among the 18 nonadenoma cases, 11 (61%) were incorrectly diagnosed as adenoma by at least 1 reader, including Rathke cleft cyst, plasmacytoma, aneurysm, craniopharyngioma, chordoma, Langerhans cell histiocytosis, metastasis, and undifferentiated sinonasal carcinoma. Among the 21 adenoma cases, 8 (38%) were incorrectly diagnosed by at least 1 reader as craniopharyngioma, Rathke cleft cyst, sinonasal carcinoma, hemangioblastoma, and pituitary hyperplasia. Incorrect imaging diagnoses were made with high confidence in 13% of readings. Avoidable errors among the nonadenomatous cases occurred when readers failed to appreciate that the lesion was separate from the pituitary gland. Unavoidable errors in those cases occurred when the lesions were so large that the pituitary gland had been obliterated or the imaging features of a nonadenomatous lesion resembled those of a cystic pituitary adenoma. Avoidable errors in misdiagnosis of adenomas as nonadenomas occurred when readers failed to appreciate features highly characteristic of adenomas. An unavoidable error occurred because a cystic adenoma had features correctly associated with craniopharyngioma. CONCLUSIONS: Errors in imaging differentiation of pituitary adenoma from nonadenomatous lesions occurred often and sometimes with high confidence among a small sample of neurosurgeons and neuroradiologists. In the misdiagnosis of nonadenomatous lesions as adenomas, errors occurred largely from failure to appreciate a separate pituitary gland, but unavoidable errors occurred when large lesions had obliterated this distinguishing feature. In the misdiagnosis of adenomas as nonadenomatous lesions, avoidable errors occurred because readers failed to recognize imaging features more characteristic of adenomas and because cystic adenomas share features with craniopharyngiomas and Rathke cleft cysts. Awareness of these errors should lead to improved management of sellar lesions.


Asunto(s)
Adenoma , Quistes del Sistema Nervioso Central , Craneofaringioma , Neoplasias Hipofisarias , Adenoma/diagnóstico por imagen , Adenoma/patología , Quistes del Sistema Nervioso Central/diagnóstico por imagen , Craneofaringioma/diagnóstico por imagen , Craneofaringioma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Hipofisarias/diagnóstico por imagen , Estudios Retrospectivos
10.
Nature ; 506(7486): 97-101, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24390345

RESUMEN

Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Pueblo Asiatico/genética , Población Negra/genética , Estudios de Cohortes , Retículo Endoplásmico/genética , Femenino , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Células HeLa , Humanos , Indígenas Norteamericanos/genética , Metabolismo de los Lípidos/genética , Hígado/citología , Hígado/metabolismo , Masculino , México , Hombre de Neandertal/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Población Blanca/genética
11.
Am J Hum Genet ; 99(4): 791-801, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27666372

RESUMEN

Massively parallel whole-genome sequencing (WGS) data have ushered in a new era in human genetics. These data are now being used to understand the role of rare variants in complex traits and to advance the goals of precision medicine. The technological and computing advances that have enabled us to generate WGS data on thousands of individuals have also outpaced our ability to perform analyses in scientifically and statistically rigorous and thoughtful ways. The past several years have witnessed the application of whole-exome sequencing (WES) to complex traits and diseases. From our analysis of NHLBI Exome Sequencing Project (ESP) data, not only have a number of important disease and complex trait association findings emerged, but our collective experience offers some valuable lessons for WGS initiatives. These include caveats associated with generating automated pipelines for quality control and analysis of rare variants; the importance of studying minority populations; sample size requirements and efficient study designs for identifying rare-variant associations; and the significance of incidental findings in population-based genetic research. With the ESP as an example, we offer guidance and a framework on how to conduct a large-scale association study in the era of WGS.


Asunto(s)
Exoma/genética , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/normas , National Heart, Lung, and Blood Institute (U.S.) , Femenino , Variación Genética , Genoma Humano/genética , Guías como Asunto , Humanos , Masculino , Control de Calidad , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Estados Unidos
12.
Nature ; 493(7431): 216-20, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201682

RESUMEN

Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history and will help to facilitate the development of new approaches for disease-gene discovery. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth, notable for an excess of rare genetic variants, suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European American and African American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that approximately 73% of all protein-coding SNVs and approximately 86% of SNVs predicted to be deleterious arose in the past 5,000-10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs than other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the Out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, show the profound effect of recent human history on the burden of deleterious SNVs segregating in contemporary populations, and provide important practical information that can be used to prioritize variants in disease-gene discovery.


Asunto(s)
Evolución Molecular , Exoma/genética , Variación Genética/genética , Sistemas de Lectura Abierta/genética , África/etnología , Alelos , Población Negra/genética , Europa (Continente)/etnología , Exones/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Estados Unidos , Población Blanca/genética
13.
Hum Mol Genet ; 25(10): 2070-2081, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26911676

RESUMEN

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci.


Asunto(s)
Mapeo Cromosómico , Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Negro o Afroamericano/genética , Alelos , Pueblo Asiatico/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Canal de Potasio KCNQ1/genética , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Elementos Reguladores de la Transcripción/genética , Población Blanca/genética , ARNt Metiltransferasas/genética
14.
PLoS Genet ; 11(4): e1005165, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25906071

RESUMEN

Genome and exome sequencing in large cohorts enables characterization of the role of rare variation in complex diseases. Success in this endeavor, however, requires investigators to test a diverse array of genetic hypotheses which differ in the number, frequency and effect sizes of underlying causal variants. In this study, we evaluated the power of gene-based association methods to interrogate such hypotheses, and examined the implications for study design. We developed a flexible simulation approach, using 1000 Genomes data, to (a) generate sequence variation at human genes in up to 10K case-control samples, and (b) quantify the statistical power of a panel of widely used gene-based association tests under a variety of allelic architectures, locus effect sizes, and significance thresholds. For loci explaining ~1% of phenotypic variance underlying a common dichotomous trait, we find that all methods have low absolute power to achieve exome-wide significance (~5-20% power at α = 2.5 × 10(-6)) in 3K individuals; even in 10K samples, power is modest (~60%). The combined application of multiple methods increases sensitivity, but does so at the expense of a higher false positive rate. MiST, SKAT-O, and KBAC have the highest individual mean power across simulated datasets, but we observe wide architecture-dependent variability in the individual loci detected by each test, suggesting that inferences about disease architecture from analysis of sequencing studies can differ depending on which methods are used. Our results imply that tens of thousands of individuals, extensive functional annotation, or highly targeted hypothesis testing will be required to confidently detect or exclude rare variant signals at complex disease loci.


Asunto(s)
Enfermedades Genéticas Congénitas , Variación Genética , Estudio de Asociación del Genoma Completo , Modelos Teóricos , Alelos , Simulación por Computador , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Fenotipo
15.
Am J Hum Genet ; 94(5): 710-20, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24768551

RESUMEN

Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery, and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the field starts to explore rare variants' contribution to polygenic traits, it is of great importance to characterize and confirm the Finnish founder effect in sequencing data and to assess its implications for rare-variant association studies. Here, we employ forward simulation, guided by empirical deep resequencing data, to model the genetic architecture of quantitative polygenic traits in both the general European and the Finnish populations simultaneously. We demonstrate that power of rare-variant association tests is higher in the Finnish population, especially when variants' phenotypic effects are tightly coupled with fitness effects and therefore reflect a greater contribution of rarer variants. SKAT-O, variable-threshold tests, and single-variant tests are more powerful than other rare-variant methods in the Finnish population across a range of genetic models. We also compare the relative power and efficiency of exome array genotyping to those of high-coverage exome sequencing. At a fixed cost, less expensive genotyping strategies have far greater power than sequencing; in a fixed number of samples, however, genotyping arrays miss a substantial portion of genetic signals detected in sequencing, even in the Finnish founder population. As genetic studies probe sequence variation at greater depth in more diverse populations, our simulation approach provides a framework for evaluating various study designs for gene discovery.


Asunto(s)
Simulación por Computador , Efecto Fundador , Modelos Genéticos , Población/genética , Población Blanca/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Finlandia , Humanos , Herencia Multifactorial/genética
16.
Am J Hum Genet ; 95(5): 509-20, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439097

RESUMEN

Rare-variant association studies in common, complex diseases are customarily conducted under an additive risk model in both single-variant and burden testing. Here, we describe a method to improve detection of rare recessive variants in complex diseases termed RAFT (recessive-allele-frequency-based test). We found that RAFT outperforms existing approaches when the variant influences disease risk in a recessive manner on simulated data. We then applied our method to 1,791 Finnish individuals with type 2 diabetes (T2D) and 2,657 matched control subjects. In BBS10, we discovered a rare variant (c.1189A>G [p.Ile397Val]; rs202042386) that confers risk of T2D in a recessive state (p = 1.38 × 10(-6)) and would be missed by conventional methods. Testing of this variant in an established in vivo zebrafish model confirmed the variant to be pathogenic. Taken together, these data suggest that RAFT can effectively reveal rare recessive contributions to complex diseases overlooked by conventional association tests.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Chaperoninas del Grupo II/genética , Modelos Genéticos , Obesidad/genética , Animales , Chaperoninas , Finlandia , Frecuencia de los Genes , Humanos , Funciones de Verosimilitud , Oportunidad Relativa , Pez Cebra
17.
N Engl J Med ; 371(26): 2488-98, 2014 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-25426837

RESUMEN

BACKGROUND: The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. METHODS: We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. RESULTS: Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). CONCLUSIONS: Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).


Asunto(s)
Sangre , Transformación Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Mutación , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Células Clonales , Análisis Mutacional de ADN , Exoma , Humanos , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 111(36): 13127-32, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157153

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF < 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D.


Asunto(s)
Adipocitos/patología , Diferenciación Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Predisposición Genética a la Enfermedad , PPAR gamma/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Etnicidad/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Análisis de Secuencia de ADN
19.
Proc Natl Acad Sci U S A ; 111(52): 18661-6, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512530

RESUMEN

Lung adenocarcinomas harboring activating mutations in the epidermal growth factor receptor (EGFR) represent a common molecular subset of non-small cell lung cancer (NSCLC) cases. EGFR mutations predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs) and thus represent a dependency in NSCLCs harboring these alterations, but the genetic basis of EGFR dependence is not fully understood. Here, we applied an unbiased, ORF-based screen to identify genetic modifiers of EGFR dependence in EGFR-mutant NSCLC cells. This approach identified 18 kinase and kinase-related genes whose overexpression can substitute for EGFR in EGFR-dependent PC9 cells, and these genes include seven of nine Src family kinase genes, FGFR1, FGFR2, ITK, NTRK1, NTRK2, MOS, MST1R, and RAF1. A subset of these genes can complement loss of EGFR activity across multiple EGFR-dependent models. Unbiased gene-expression profiling of cells overexpressing EGFR bypass genes, together with targeted validation studies, reveals EGFR-independent activation of the MEK-ERK and phosphoinositide 3-kinase (PI3K)-AKT pathways. Combined inhibition of PI3K-mTOR and MEK restores EGFR dependence in cells expressing each of the 18 EGFR bypass genes. Together, these data uncover a broad spectrum of kinases capable of overcoming dependence on EGFR and underscore their convergence on the PI3K-AKT and MEK-ERK signaling axes in sustaining EGFR-independent survival.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Receptores ErbB/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/enzimología , Sistema de Señalización de MAP Quinasas , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-mos/biosíntesis , Proteínas Proto-Oncogénicas c-mos/genética , Proteínas Proto-Oncogénicas c-raf/biosíntesis , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor trkA/biosíntesis , Receptor trkA/genética , Receptor trkB
20.
PLoS Genet ; 10(7): e1004494, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25078778

RESUMEN

Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10⁻8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10⁻¹¹7). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10⁻4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.


Asunto(s)
Efecto Fundador , Enfermedades Genéticas Congénitas , Flujo Genético , Genética de Población , Exoma/genética , Femenino , Finlandia , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenotipo , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA