Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell Neurosci ; 68: 131-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26164566

RESUMEN

The floor plate (FP), a ventral midline structure of the developing neural tube, has differential neurogenic capabilities along the anterior-posterior axis. The midbrain FP, unlike the hindbrain and spinal cord floor plate, is highly neurogenic and produces midbrain dopaminergic (mDA) neurons. Canonical Wnt/beta-catenin signaling, at least in part, is thought to account for the difference in neurogenic capability. Removal of beta-catenin results in mDA progenitor specification defects as well as a profound reduction of neurogenesis. To examine the effects of excessive Wnt/beta-catenin signaling on mDA specification and neurogenesis, we have analyzed a model wherein beta-catenin is conditionally stabilized in the Shh+domain. Here, we show that the Foxa2+/Lmx1a+ domain is extended rostrally in mutant embryos, suggesting that canonical Wnt/beta-catenin signaling can drive FP expansion along the rostrocaudal axis. Although excess canonical Wnt/beta-catenin signaling generally promotes neurogenesis at midbrain levels, less tyrosine hydroxylase (Th)+, mDA neurons are generated, particularly impacting the Substantia Nigra pars compacta. This is likely because of improper progenitor specification. Excess canonical Wnt/beta-catenin signaling causes downregulation of net Lmx1b, Shh and Foxa2 levels in mDA progenitors. Moreover, these progenitors assume a mixed identity to that of Lmx1a+/Lmx1b+/Nkx6-1+/Neurog1+ progenitors. We also show by lineage tracing analysis that normally, Neurog1+ progenitors predominantly give rise to Pou4f1+ neurons, but not Th+ neurons. Accordingly, in the mutant embryos, Neurog1+ progenitors at the midline generate ectopic Pou4f1+ neurons at the expense of Th+ mDA neurons. Our study suggests that an optimal dose of Wnt/beta-catenin signaling is critical for proper establishment of the mDA progenitor character. Our findings will impact embryonic stem cell protocols that utilize Wnt pathway reagents to derive mDA neuron models and therapeutics for Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Mesencéfalo/citología , Neurogénesis/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Factores de Edad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Embrión de Mamíferos , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Mesencéfalo/embriología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
2.
PLoS Genet ; 9(12): e1003973, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348261

RESUMEN

MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key ingredient for programming ESCs towards a dopaminergic fate in vitro, these studies could impact the rational design of such protocols.


Asunto(s)
Proteínas con Homeodominio LIM/genética , MicroARNs/metabolismo , Neurogénesis/genética , Enfermedad de Parkinson/genética , Factores de Transcripción/genética , Proteína Wnt1/genética , Animales , Diferenciación Celular/genética , ARN Helicasas DEAD-box/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Embrión de Mamíferos , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas con Homeodominio LIM/metabolismo , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , MicroARNs/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ribonucleasa III/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
3.
Dev Dyn ; 241(9): 1465-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22753148

RESUMEN

BACKGROUND: Tooth development is known to be mediated by the cross-talk between signaling pathways, including Shh, Fgf, Bmp, and Wnt. MicroRNAs (miRNAs) are 19- to 25-nt noncoding small single-stranded RNAs that negatively regulate gene expression by binding target mRNAs, which is believed to be important for the fine-tuning signaling pathways in development. To investigate the role of miRNAs in tooth development, we examined mice with either mesenchymal (Wnt1Cre/Dicer(fl/fl)) or epithelial (ShhCre/Dicer(fl/fl)) conditional deletion of Dicer, which is essential for miRNA processing. RESULTS: By using a CD1 genetic background for Wnt1Cre/Dicer(fl/fl), we were able to examine tooth development, because the mutants retained mandible and maxilla primordia. Wnt1Cre/Dicer(fl/fl) mice showed an arrest or absence of teeth development, which varied in frequency between incisors and molars. Extra incisor tooth formation was found in ShhCre/Dicer(fl/fl) mice, whereas molars showed no significant anomalies. Microarray and in situ hybridization analysis identified several miRNAs that showed differential expression between incisors and molars. CONCLUSION: In tooth development, miRNAs thus play different roles in epithelium and mesenchyme, and in incisors and molars.


Asunto(s)
Epitelio/embriología , Mesodermo/embriología , MicroARNs/fisiología , Odontogénesis/genética , Diente/embriología , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Embrión de Mamíferos , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Integrasas/genética , Integrasas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Análisis por Micromatrices , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Diente/citología , Diente/metabolismo , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(45): 19185-90, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19850875

RESUMEN

Midbrain dopamine neurons (mDA) are important regulators of diverse physiological functions, including movement, attention, and reward behaviors. Accordingly, aberrant function of dopamine neurons underlies a wide spectrum of disorders, such as Parkinson's disease (PD), dystonia, and schizophrenia. The distinct functions of the dopamine system are carried out by neuroanatomically discrete subgroups of dopamine neurons, which differ in gene expression, axonal projections, and susceptibility in PD. The developmental underpinnings of this heterogeneity are undefined. We have recently shown that in the embryonic CNS, mDA originate from the midbrain floor plate, a ventral midline structure that is operationally defined by the expression of the molecule Shh. Here, we develop these findings to reveal that in the embryonic midbrain, the spatiotemporally dynamic Shh domain defines multiple progenitor pools. We deduce 3 distinct progenitor pools, medial, intermediate, and lateral, which contribute to different mDA clusters. The earliest progenitors to express Shh, here referred to as the medial pool, contributes neurons to the rostral linear nucleus and mDA of the ventral tegmental area/interfascicular regions, but remarkably, little to the substantia nigra pars compacta. The intermediate Shh+ progenitors give rise to neurons of all dopaminergic nuclei, including the SNpc. The last and lateral pool of Shh+ progenitors generates a cohort that populates the red nucleus, Edinger Westphal nucleus, and supraoculomotor nucleus and cap. Subsequently, these lateral Shh+ progenitors produce mDA. This refined ontogenetic definition will expand understanding of dopamine neuron biology and selective susceptibility, and will impact stem cell-derived therapies and models for PD.


Asunto(s)
Dopamina/metabolismo , Proteínas Hedgehog/metabolismo , Mesencéfalo/embriología , Modelos Neurológicos , Neuronas/metabolismo , Estructura Terciaria de Proteína/fisiología , Células Madre/metabolismo , Animales , Galactósidos , Histocitoquímica , Hibridación in Situ , Indoles , Mesencéfalo/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/citología , Células Madre/citología
5.
J Neurosci ; 30(22): 7722-8, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20519547

RESUMEN

MicroRNAs, by modulating gene expression, have been implicated as regulators of various cellular and physiological processes, including differentiation, proliferation, and cancer. Here, we study the role of microRNAs in Schwann cell (SC) differentiation by conditional removal of the microRNA processing enzyme Dicer1. We reveal that both male and female mice lacking Dicer1 in SC (Dicer1 conditional knock-outs) display a severe neurological phenotype resembling congenital hypomyelination. Ultrastructural analyses show that many SC lacking Dicer1 are stalled in differentiation at the promyelinating state and fail to myelinate axons. Gene expression analyses reveal a failure to extinguish genes characteristic of the undifferentiated state such as Sox2, Jun, and Ccnd1. Sox2 and Jun are well characterized negative regulators of SC differentiation. Consistent with Sox2/Jun maintenance, Egr2, a master regulator of the myelinating program, is drastically downregulated and likely accounts for the myelination defect. We posit a model wherein microRNAs are critical for downregulation of antecedent programs of gene expression. In SC differentiation, this is particularly relevant in the key developmental transition from a promyelinating to myelinating SC.


Asunto(s)
ARN Helicasas DEAD-box/deficiencia , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Endorribonucleasas/deficiencia , MicroARNs/metabolismo , Células de Schwann/patología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Diferenciación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Indoles , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ribonucleasa III , Factores de Transcripción SOXB1/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/patología
6.
Neural Dev ; 11: 9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048518

RESUMEN

BACKGROUND: Brain size and patterning are dependent on dosage-sensitive morphogen signaling pathways - yet how these pathways are calibrated remains enigmatic. Recent studies point to a new role for microRNAs in tempering the spatio-temporal range of morphogen functions during development. Here, we investigated the role of miR-135a, derived from the mir-135a-2 locus, in embryonic forebrain development. METHOD: 1. We characterized the expression of miR-135a, and its host gene Rmst, by in situ hybridization (ish). 2. We conditionally ablated, or activated, beta-catenin in the dorsal forebrain to determine if this pathway was necessary and/or sufficient for Rmst/miR-135a expression. 3. We performed bioinformatics analysis to unveil the most predicted pathways targeted by miR-135a. 4. We performed gain and loss of function experiments on mir-135a-2 and analyzed by ish the expression of key markers of cortical hem, choroid plexus, neocortex and hippocampus. RESULTS: 1. miR-135a, embedded in the host long non-coding transcript Rmst, is robustly expressed, and functional, in the medial wall of the embryonic dorsal forebrain, a Wnt and TGFß/BMP-rich domain. 2. Canonical Wnt/beta-catenin signaling is critical for the expression of Rmst and miR-135a, and the cortical hem determinant Lmx1a. 3. Bioinformatics analyses reveal that the Wnt and TGFß/BMP cascades are among the top predicted pathways targeted by miR-135a. 4. Analysis of mir-135a-2 null embryos showed that dorsal forebrain development appeared normal. In contrast, modest mir-135a-2 overexpression, in the early dorsal forebrain, resulted in a phenotype resembling that of mutants with Wnt and TGFß/BMP deficits - a smaller cortical hem and hippocampus primordium associated with a shorter neocortex as well as a less convoluted choroid plexus. Interestingly, late overexpression of mir-135a-2 revealed no change. CONCLUSIONS: All together, our data suggests the existence of a Wnt/miR-135a auto-regulatory loop, which could serve to limit the extent, the duration and/or intensity of the Wnt and, possibly, the TGFß/BMP pathways.


Asunto(s)
MicroARNs/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Vía de Señalización Wnt , Animales , Proteínas con Homeodominio LIM/metabolismo , Ratones , Proteínas de la Superfamilia TGF-beta/metabolismo , Factores de Transcripción/metabolismo
7.
Neurogenesis (Austin) ; 2(1): e998101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27502145

RESUMEN

Canonical Wnt signaling is critical for midbrain dopaminergic progenitor specification, proliferation, and neurogenesis. Yet mechanisms that control Wnt signaling remain to be fully elucidated. Wnt1 is a key ligand in the embryonic midbrain, and directs proliferation, survival, specification and neurogenesis. In a recent study, we reveal that the transcription factor Lmx1b promotes Wnt1/Wnt signaling, and dopaminergic progenitor expansion, consistent with earlier studies. Additionally, Lmx1b drives expression of a non-coding RNA called Rmst, which harbors miR135a2 in its last intron. miR135a2 in turn targets Lmx1b as well as several Wnt pathway targets. Conditional overexpression of miR135a2 in the midbrain, particularly during an early time, results in a decreased dopaminergic progenitor pool, and less dopaminergic neurons, consistent with decreased Wnt signaling. We propose a model in which Lmx1b and miR135a2 influence levels of Wnt1 and Wnt signaling, and expansion of the dopaminergic progenitor pool. Further loss of function experiments and biochemical validation of targets will be critical to verify this model. Wnt agonists have recently been utilized for programming stem cells toward a dopaminergic fate in vitro, highlighting the importance of agents that modulate the Wnt pathway.

8.
FEBS Lett ; 589(24 Pt A): 3714-26, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26505674

RESUMEN

Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Animales , Heterogeneidad Genética , Humanos , Mesencéfalo/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Análisis de la Célula Individual , Transcriptoma
9.
Nat Neurosci ; 12(2): 125-31, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122665

RESUMEN

The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons. Distinct spatiotemporal Shh and Wnt expression may distinguish the neurogenetic potential of these structures. We discovered an inhibitory role for Shh: removal of Shh resulted in neurogenesis from the hindbrain midline and, conversely, high doses of Shh inhibited proliferation and DA neuron production in midbrain cultures. We found that Wnt/beta-catenin signaling is necessary and sufficient for antagonizing Shh, DA progenitor marker induction and promotion of dopaminergic neurogenesis. These findings demonstrate how the dynamic interplay of canonical Wnt/beta-catenin signaling and Shh may orchestrate floor plate neurogenesis or a lack thereof.


Asunto(s)
Proteínas Hedgehog/metabolismo , Mesencéfalo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Nicho de Células Madre/fisiología , Proteínas Wnt/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Masculino , Mesencéfalo/citología , Mesencéfalo/embriología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores de Transcripción Otx/metabolismo , Embarazo , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/fisiología , Transducción de Señal/fisiología , Nicho de Células Madre/citología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA