Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mol Cell Biol ; 17(11): 6367-78, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9343398

RESUMEN

The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.


Asunto(s)
ADN Polimerasa III/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Análisis Mutacional de ADN , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Endonucleasas de ADN Solapado , Genes Fúngicos , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Fenotipo , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , Proteínas Recombinantes/metabolismo
2.
Mol Cell Biol ; 15(8): 4420-9, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7623835

RESUMEN

The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions between repair-specific protein(s) and PCNA, which are distinct from those required for DNA replication.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Homeodominio , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , División Celular/genética , Frío , Daño del ADN , Análisis Mutacional de ADN , ADN Polimerasa II , ADN Polimerasa III , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Dominantes , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Fenotipo , Polietilenglicoles/farmacología , Antígeno Nuclear de Célula en Proliferación/inmunología , Unión Proteica , Pliegue de Proteína , Proteína de Replicación C , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/inmunología , Relación Estructura-Actividad , Supresión Genética , Rayos Ultravioleta/efectos adversos
3.
Biochim Biophys Acta ; 951(2-3): 274-9, 1988 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-2905171

RESUMEN

We have previously reported the purification of yeast analogs to mammalian DNA polymerase delta and proliferating-cell nuclear antigen (PCNA)/cyclin: DNA polymerase III and yeast PCNA, respectively. Through the use of gel-filtration chromatography, we have studied the interaction of the model template-primer system poly(dA).(dT)16 (40:1) with yeast DNA polymerase III and with PCNAs. Yeast DNA polymerase III binds to the DNA in the absence of yeast PCNA/cyclin, but comigration of either yeast or calf thymus PCNA/cyclin with the DNA requires the additional presence of yeast DNA polymerase III. We could also isolate a DNA-calf thymus DNA polymerase delta-calf thymus PCNA/cyclin complex. From these data, we propose that PCNA/cyclin is involved not in the binding step of the polymerase to the template-primer, but in the elongation step. The 3'----5' exonuclease associated with yeast DNA polymerase III acts in a distributive manner on poly(dA).(pT)16, and dissociates from the DNA when addition of dTTP allows switching from the exonuclease to the polymerase mode. Addition of PCNA/cyclin had no effect on these activities.


Asunto(s)
ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/enzimología , Animales , Bovinos , Cromatografía en Gel , Exodesoxirribonucleasa V , Exodesoxirribonucleasas/metabolismo , Poli dA-dT/metabolismo , Antígeno Nuclear de Célula en Proliferación , Nucleótidos de Timina/metabolismo
7.
Nucleic Acids Res ; 16(14A): 6297-307, 1988 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-2899883

RESUMEN

Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/fisiología , Animales , Bovinos , Técnicas In Vitro , Cinética , Magnesio/fisiología , Antígeno Nuclear de Célula en Proliferación , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Moldes Genéticos
8.
Methods ; 18(3): 349-55, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10454996

RESUMEN

Facile genetic and biochemical manipulation coupled with rapid cell growth and low cost of growth media has established the yeast Saccharomyces cerevisiae as a versatile workhorse. This article describes the use of yeast expression systems for the overproduction of complex multipolypeptide replication factors. The regulated overexpression of these factors in yeast provides for a readily accessible and inexpensive source of these factors in large quantities. The methodology is illustrated with the five-subunit replication factor C. Whole-cell extracts are prepared by blending yeast cells with glass beads or frozen yeast with dry ice. Procedures are described that maximize the yield of these factors while minimizing proteolytic degradation.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Proteínas de Homeodominio , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces/genética , División Celular , Endopeptidasas/metabolismo , Proteínas Fúngicas/economía , Regulación Fúngica de la Expresión Génica , Vectores Genéticos , Antígenos de Histocompatibilidad Menor , Plásmidos , Inhibidores de Proteasas/farmacología , Proteína de Replicación C
9.
Chromosoma ; 107(4): 218-27, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9745046

RESUMEN

DNA polymerases carry out a large variety of synthetic transactions during DNA replication, DNA recombination and DNA repair. Substrates for DNA polymerases vary from single nucleotide gaps to kilobase size gaps and from relatively simple gapped structures to complex replication forks in which two strands need to be replicated simultaneously. Consequently, one would expect the cell to have developed a well-defined set of DNA polymerases with each one uniquely adapted for a specific pathway. And to some degree this turns out to be the case. However, in addition we seem to find a large degree of cross-functionality of DNA polymerases in these different pathways. DNA polymerase alpha is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. In most organisms no specific repair role beyond that of checkpoint control has been assigned to this enzyme. DNA polymerase delta functions as a dimer and, therefore, may be responsible for both leading and lagging strand DNA replication. In addition, this enzyme is required for mismatch repair and, together with DNA polymerase zeta, for mutagenesis. The function of DNA polymerase epsilon in DNA replication may be restricted to that of Okazaki fragment maturation. In contrast, either polymerase delta or epsilon suffices for the repair of UV-induced damage. The role of DNA polymerase beta in base-excision repair is well established for mammalian systems, but in yeast, DNA polymerase delta appears to fulfill that function.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Células Eucariotas/enzimología , Animales , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Modelos Genéticos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 266(33): 22698-706, 1991 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-1682322

RESUMEN

Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Autoantígenos/metabolismo , Cromatografía en Gel , ADN Polimerasa III , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Cinética , Modelos Estructurales , Antígeno Nuclear de Célula en Proliferación , Unión Proteica , Saccharomyces cerevisiae/genética
11.
EMBO J ; 19(14): 3811-21, 2000 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-10899134

RESUMEN

The FEN1 nuclease functions during Okazaki fragment maturation in the eukaryotic cell. Like many other proliferating cell nuclear antigen (PCNA)-binding proteins, FEN1 interacts with the interdomain connector loop (IDCL) of PCNA, and PCNA greatly stimulates FEN1 activity. A yeast IDCL mutant pcna-79 (IL126,128AA) failed to interact with FEN-1, but, surprisingly, pcna-79 was still very active in stimulating FEN1 activity. In contrast, a C-terminal mutant pcna-90 (PK252,253AA) showed wild-type binding to FEN1 in solution, but poorly stimulated FEN1 activity. When PCNA was loaded onto a DNA substrate coupled to magnetic beads, it stabilized retention of FEN1 on the DNA. In this DNA-dependent binding assay, pcna-79 also stabilized retention of FEN1, but pcna-90 was inactive. Therefore, in the absence of DNA, FEN1 interacts with PCNA mainly through the IDCL. However, when PCNA encircles the DNA, the C-terminal domain of PCNA rather than its IDCL is important for binding FEN1. An FF-->GA mutation in the PCNA-interaction domain of FEN1 severely decreased both modes of interaction with PCNA and resulted in replication and repair defects in vivo.


Asunto(s)
ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , ADN/genética , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Exodesoxirribonucleasa V , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Modelos Moleculares , Mutación , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resonancia por Plasmón de Superficie
12.
J Biol Chem ; 269(34): 21880-4, 1994 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-8063832

RESUMEN

The RFC4 gene encoding the 37-kDa subunit of Saccharomyces cerevisiae replication factor C (RF-C) has been cloned and sequenced. The RFC4 gene encodes a 323-amino acid polypeptide with a molecular weight of 36,126. The deduced amino acid sequence of the RFC4 gene shows high sequence similarity to the other two small subunits of yeast RF-C and the three small subunits of human RF-C (35-60% identity, 55-78% similarity). The similarity is greatest with the 40-kDa subunit of human RF-C (also called Activator 1). Despite the presence of a MluI cell cycle box in the regulatory region of the RFC4 gene, the steady state levels of its mRNA do not change significantly during the yeast mitotic cell cycle. The RFC4 gene is essential for yeast viability and is located on the left arm of chromosome XV, between the SUF1 and ADH1 genes. The essential role of this as well as the other small subunits of RF-C indicates a unique function for each of these subunits, despite their apparent structural redundancy. Rfc4p was overexpressed in Escherichia coli. Despite the presence of consensus ATPase motifs in the primary amino acid sequence, no discernible biochemical function could be ascribed to the purified protein. However, Rfc4p formed a tight complex with the product of the RFC3 gene which encodes the ATPase of RF-C.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes Fúngicos/genética , Genes Letales/genética , Proteínas de Homeodominio , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo Celular , Mapeo Cromosómico , Clonación Molecular , Proteínas de Unión al ADN/biosíntesis , Antígenos de Histocompatibilidad Menor , Datos de Secuencia Molecular , Conformación Proteica , Proteína de Replicación C , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
13.
J Biol Chem ; 268(27): 19923-6, 1993 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-8104181

RESUMEN

The proliferating cell nuclear antigen (PCNA) is a processivity subunit for eukaryotic DNA polymerase delta. We present biochemical evidence that yeast PCNA likely adopts a toroidal structure containing an inside cavity through which double-stranded DNA slides. A comparative study of DNA replication reactions on circular versus linear model substrates shows that PCNA can only interact productively with DNA polymerase delta if the substrate is linear. This combined with the observation that a large molar excess of PCNA is required for maximal stimulatory activity is consistent with a model in which PCNA slips onto the end of the DNA in an ATP-independent manner.


Asunto(s)
Adenosina Trifosfato/metabolismo , Replicación del ADN , ADN de Cadena Simple/biosíntesis , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Antígenos de Neoplasias/metabolismo , ADN Polimerasa III , Enzimas de Restricción del ADN/metabolismo , ADN Circular/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Cinética , Modelos Estructurales , Antígeno Nuclear de Célula en Proliferación , Mapeo Restrictivo
14.
J Bacteriol ; 166(3): 905-13, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3519585

RESUMEN

A coliphage M13 chimer containing the Saccharomyces cerevisiae TRP1 gene and ARS1 replication origin (mPY2) was grown on an ung- dut- strain of Escherichia coli. The resulting single-stranded phage DNA had 13% of thymine residues substituted by uracil. This DNA failed to transform a delta trp1 yeast strain to prototrophy. However, when a mutagenized yeast stock was transformed with uracil-containing single-stranded mPY2 DNA, unstable transformants were obtained. After plasmid segregation, about half of these were retransformed at a high frequency by uracil-containing single-stranded mPY2 DNA. In vitro, these mutants were defective for uracil-DNA-glycosylase activity. They were designated ung1. Strains containing the ung1 mutation have an increased sensitivity to sodium bisulfite and sodium nitrite but a wild-type sensitivity to methyl methanesulfonate, UV light, and drugs that cause depletion of the thymidylate pool. They have a moderate mutator phenotype for nuclear but not for mitochondrial genes. A low mitochondrial uracil-DNA-glycosylase activity was demonstrated in the mutant strains.


Asunto(s)
ADN Glicosilasas , Mutación , N-Glicosil Hidrolasas/genética , Saccharomyces cerevisiae/genética , Uracilo/metabolismo , Núcleo Celular/enzimología , Quimera , ADN de Cadena Simple/metabolismo , Genes Fúngicos , Metilmetanosulfonato/farmacología , Mitocondrias/enzimología , Fenotipo , Plásmidos , Rayos Ultravioleta , Uracil-ADN Glicosidasa
15.
Proc Natl Acad Sci U S A ; 85(20): 7506-10, 1988 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-2902631

RESUMEN

DNA polymerase III from Saccharomyces cerevisiae is analogous to the mammalian DNA polymerase delta by several criteria, including an increased synthetic activity on poly(dA).oligo(dT) (40:1 nucleotide ratio) in the presence of calf thymus proliferating-cell nuclear antigen (PCNA), or cyclin. This stimulation assay has been used to purify the yeast analog of PCNA/cyclin (yPCNA) to homogeneity. yPCNA is a trimer or tetramer (Mr approximately 82,000) of identical subunits with a denatured Mr of 26,000. On a molar basis yPCNA and calf thymus PCNA/cyclin are equally active in stimulating DNA synthesis by DNA polymerase III. About 10 times more yPCNA than calf thymus PCNA/cyclin is needed, however, to stimulate calf thymus DNA polymerase delta, and the degree of stimulation obtained at saturating levels of yPCNA is a factor of 2-3 less than with calf thymus PCNA/cyclin. Both stimulatory proteins exert their effect in an identical fashion, i.e., by increasing the processivity of the DNA polymerase. Yeast DNA polymerases I and II and calf thymus DNA polymerase alpha are not stimulated by yPCNA. Treatment of logarithmic-phase cells with hydroxyurea blocks them in the S phase and produces a 4- to 5-fold increase in yPCNA.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/análisis , Animales , Antígenos Fúngicos/aislamiento & purificación , Bovinos , Ciclo Celular , ADN Polimerasa III , Proteínas Nucleares/aislamiento & purificación , Antígeno Nuclear de Célula en Proliferación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/inmunología
16.
J Biol Chem ; 263(2): 925-30, 1988 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-3121622

RESUMEN

The newly identified yeast DNA polymerase III was compared to DNA polymerases I and II and the mitochondrial DNA polymerase. Inhibition by aphidicolin (I50) of DNA polymerases I, II, and III was 4, 6, and 0.6 micrograms/ml, respectively. The mitochondrial enzyme was insensitive to the drug. N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate strongly inhibited DNA polymerase I (I50 = 0.3 microM), whereas DNA polymerase III was less sensitive (I50 = 80 microM). Conditions that allowed proteolysis to proceed during the preparation of extracts converted DNA polymerase II from a sensitive form (I50 = 2.4 microM) to a resistant form (I50 = 2 mM). The mitochondrial DNA polymerase is insensitive (I50 greater than 5 mM). With most other inhibitors tested (N-ethylmaleimide, heparin, salt) only small differences were observed between the three nuclear DNA polymerases. Polyclonal antibodies to DNA polymerase III did not inhibit DNA polymerases I and II, nor were those polymerases recognized by Western blotting. Monoclonal antibodies to DNA polymerase I did not crossreact with DNA polymerases II and III. The results show that DNA polymerase III is distinct from DNA polymerase I and II.


Asunto(s)
ADN Polimerasa III/antagonistas & inhibidores , ADN Polimerasa II/antagonistas & inhibidores , ADN Polimerasa I/antagonistas & inhibidores , Inhibidores de la Síntesis del Ácido Nucleico , Saccharomyces cerevisiae/enzimología , Anticuerpos Monoclonales , Afidicolina , Nucleótidos de Desoxiguanina/farmacología , Diterpenos/farmacología , Cinética
17.
Anal Biochem ; 163(2): 391-7, 1987 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3310730

RESUMEN

The efficiency of genetic transformation of Saccharomyces cerevisiae spheroplasts has been increased 10- to 100-fold over previously published procedures. Optimal transformation frequencies for single-stranded and double-stranded replicating plasmids are 2 X 10(7) and 5 X 10(6) transformants/microgram, respectively. At saturating DNA concentrations, 12 and 3%, respectively, of the viable spheroplasts contain plasmid DNA. The percentage of transformants that have undergone nuclear fusion varies from 0.1 to 3%, indicating that fusion is not required for the uptake of DNA by yeast spheroplasts.


Asunto(s)
Saccharomyces cerevisiae/genética , Transformación Genética , Fusión Celular , ADN de Hongos/genética , ADN de Cadena Simple/genética , Plásmidos , Esferoplastos
18.
J Biol Chem ; 258(12): 7669-75, 1983 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-6345527

RESUMEN

ATP-activated DNA polymerase III holoenzyme (holoenzyme) forms a stable initiation complex with primed DNA with concomitant hydrolysis of the ATP (Burgers, P. M. J., and Kornberg, A. (1982) J. Biol. Chem. 257, 11468-11478). Upon replication of primed single-stranded circular DNA to a duplex circle with a small gap (RFII), the holoenzyme remains stably bound. Dissociation requires binding by ATP or the generally nonhydrolyzable analog, adenosine 5'-(3-thiotriphosphate). Transfer of holoenzyme to another primed DNA absolutely requires ATP (or dATP) and takes about 2 min at 30 degrees C. The rate of cycling of holoenzyme is only slightly dependent on the concentration of primed DNA. However, the transfer time is reduced to only 2 to 5 s when it is intramolecular, as shown by movement to other primers on the same template chain. A rapid transfer of holoenzyme from a completed chain to another primer on the same template molecule is anticipated from the frequency of initiating nascent chains at the replicating fork of the cellular chromosome (about 1 per s at 37 degrees C) and the low cellular abundance of holoenzyme (about 10 to 20 molecules per cell).


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/enzimología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , ADN Ligasas/metabolismo , ADN Polimerasa I/metabolismo , Escherichia coli/genética , Cinética
19.
J Biol Chem ; 255(17): 8229-33, 1980 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-6893324

RESUMEN

The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) and adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) were tested as substrates for creatine kinase in the presence of different activating divalent metal cations. In the presence of Mg2+, the Rp diastereomers of both ATP alpha S and ATP beta S are the preferred substrates, whereas in the presence of Cd2+, the Sp diastereomers are preferred. In the reverse reaction the Rp isomer of ADP alpha S is the better substrate in the presence of Mg2+ while the Sp isomer is preferred in the presence of Cd2+. In the presence of Mg2+, only the Rp isomer of ATP beta S is synthesized from prochiral ADP beta S while the Sp isomer is synthesized predominantly in the presence of Cd2+. In the presence of Ca2+, Mn2+, and Co2+, loss of substrate specificity is observed. These results are explained on the basis of the observation that Mg2+ prefers to coordinate to oxygen and Cd2+ to sulfur in these phosphorothioate analogs (Jaffe, E. K., and Cohn, M. (1978) J. Biol. Chem. 253, 4823-4825). Thus, the metal ion appears to be bound to both the alpha- and beta-phosphates at some stage of the reaction. The interpretation is that the substrate binds as the lambda, beta, gamma-bidentate MgATP chelate. It can then undergo either nucleophilic substitution at the gamma-phosphorus followed by migration of the metal to yield the alpha, beta MgADP complex or metal migration followed by subsequent phosphoryl transfer. The product of the reaction is delta, alpha, beta-bidentate MgADP. The different reaction routes are discussed.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Creatina Quinasa/metabolismo , Tionucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cationes Bivalentes , Cinética , Magnesio/farmacología , Músculos/enzimología , Conejos , Estereoisomerismo , Especificidad por Sustrato
20.
Biochemistry ; 18(4): 592-6, 1979 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-217419

RESUMEN

A procedure is described for the synthesis of the title compounds via phosphotriester intermediates. The 2-cyanoethyl group is used to protect the P-SH function during the course of the synthesis. Resolution of the phosphorus diastereomers is accomplished at the phosphotriester stage. Removal of the 2-cyanoethyl group without racemization, followed by removal of the other protective groups, affords the optically pure diastereomers of 5'-O-adenosyl 3'-O-uridyl phosphorothioate. Their designation as Rp and Sp follows from the stereospecificity in the hydrolysis catalyzed by RNase A. These diastereomers are useful for the investigation of the stereospecificity as well as of the stereochemical course of action of nucleases. Snake venom exonuclease hydrolyses only the Rp diastereomer, whereas both diastereomers are substrates for RNases A and T2. The results with the latter indicate that RNase T2 also operates by an in-line mechanism.


Asunto(s)
Oligonucleótidos , Oligorribonucleótidos , Tionucleótidos , Adenosina/análogos & derivados , Adenosina/síntesis química , Cinética , Métodos , Oligonucleótidos/síntesis química , Oligorribonucleótidos/síntesis química , Hidrolasas Diéster Fosfóricas/metabolismo , Ribonucleasas/metabolismo , Venenos de Serpiente , Estereoisomerismo , Tionucleótidos/síntesis química , Uridina Monofosfato/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA